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Abstract
Current Lifelong Person Re-Identification (LReID) methods focus
on tackling a clean data stream with accurate labels. When noisy
data with incorrect labels are given, their performance is severely
degraded since the model inevitably and continually remembers
erroneous knowledge induced by the label noises. Moreover, the
well-known issue of catastrophic forgetting in LReID is exacerbated
by noisy labels, which disrupt the retention of correct knowledge
from previous models. Such a practical noisy LReID task is im-
portant but challenging, and rare works have attempted to han-
dle it. In this paper, we initially investigate noisy LReID and pro-
pose a Continual Knowledge Purification (CKP) method to address
the catastrophic remembering of erroneous knowledge and cata-
strophic forgetting of correct knowledge simultaneously. Specifi-
cally, a Cluster-aware Data Purification module (CDP) is designed
to select clean labels based on clustering-guided label confidence
estimation. Besides, an Iterative Label Rectification (ILR) pipeline
is proposed to rectify wrong labels by fusing the prediction and
label information throughout the training epochs. To handle the
catastrophic remembering problem, an Erroneous Knowledge Fil-
tering (EKF) algorithm is proposed to estimate and transfer the
correct old knowledge to the new model. Finally, a Noisy LReID
benchmark is constructed for performance evaluation and extensive
experimental results demonstrate that our proposed CKP method
achieves state-of-the-art performance. Our code is available at
https://github.com/zhoujiahuan1991/MM2024-CKP

CCS Concepts
• Computing methodologies → Object identification.
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1 Introduction
Person re-identification (ReID) [1, 21] is a classical multimedia task
that has been thoroughly investigated in stationary scenes [5, 10,
49]. Recently, lifelong person re-identification (LReID) [39], which
aims to learn from the non-stationary data stream, has drawn in-
creasing research attention. However, existing LReID methods as-
sume that the training data is accurately annotated [26, 33]. In real-
istic scenarios, training labels are often inevitably noisy due to inac-
curate person detection or annotation errors [4, 47], which has been
shown to severely hinder stationary ReID performance [44, 52].

The LReID models are even more vulnerable to label noise which
refers to thewrong labels shown in Figure 1 (a). As shown in Figure 1
(b), when noisy data are given for learning, the LReID model learns
from erroneous identity-affinity supervision [45], leading to signifi-
cant performance degradation. Besides, even though the model has
acquired correct knowledge from historical data in Figure 1 (c), label
noises in the new data can introduce erroneous information, over-
writing the correct knowledge with erroneous knowledge [31, 56],
thereby exacerbating catastrophic forgetting [54]. Additionally, as
illustrated in Figure 1 (d), since the old model inevitably remembers
erroneous knowledge of historical noisy data, the anti-forgetting
strategy can cause erroneous knowledge accumulation and impede
the acquisition of correct knowledge. These issues can significantly
hinder the performance of the existing LReID methods [42]. Note
that the histogram in Figure 1 (b) displays the performance when
learning a dataset with clean and noise labels, respectively. The
curves in Figure 1 (c) depict the performance trend on the first
dataset, where the model learns with clean labels initially and sub-
sequently adapts to datasets with varying noise ratios. Figure 1
(d) shows the average performance on all learned datasets with
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Figure 1: (a) Noisy data contains wrong labels which in-
troduce erroneous inter-instance affinity knowledge. Dur-
ing LReID, noisy data not only (b) influences the knowl-
edge learning of new datasets but also (c) exacerbates the
forgetting of correct historical knowledge. Besides, (d) the
learned erroneous knowledge is remembered by the new
model Mt which severely hinders the LReID performance.
The experiment results are obtained from the latest LReID
method [42].

different noise ratios. The above results verify that label noise is a
crucial and challenging problem for LReID.

Recently, several label noise learning (LNL) techniques have been
explored to settle the noisy ReID and classification tasks [12, 47, 48].
They primarily rely on identity prediction results [47] or loss reg-
ularization strategies [48, 50] to mitigate the influence of noisy
data [22, 35, 44]. However, these approaches neglect the dispar-
ity between label correctness and prediction/loss value distribu-
tion [36], e.g., noisy samples near the distribution boundary tend to
exhibit prediction scores or regularization effects that are indistin-
guishable from clean samples. Thus, some wrongly labeled samples
can easily be confused with clean ones, leading to the acquisition
of erroneous knowledge. Therefore, when directly applying these
LNL methods to Noisy LReID, the issues illustrated in Figure 1 (b),
(c), and (d) remain critical.

In this paper, we initially investigate this challenging noisy
LReID task and propose a novel method named Continual Knowl-
edge Purification (CKP) to handle the catastrophic remembering

and forgetting issues. Specifically, a Cluster-aware Data Purification
module (CDP) and an Iterative Label Rectification pipeline (ILR)
are proposed in our CKP to achieve high-quality clean data. CDP
can adaptively select the clean samples for new model training by
estimating the label confidence based on feature clustering, thereby
settling the problems in Figure 1 (b) and (c). Instead of simply dis-
carding the wrongly labeled samples, the proposed ILR aims to fully
utilize them by rectifying their labels along with model learning,
so that these data can be recollected by CDP for reuse. Further-
more, to actively forget the erroneous old knowledge, an Erroneous
Knowledge Filtering algorithm (EKF) is proposed to estimate the
knowledge correctness of the old model outputs, and a weighted
knowledge distillation loss is designed to transfer the correct old
knowledge to the new model while excluding the erroneous one.
Thus, the erroneous knowledge remembering issue in Figure 1 (d)
could be greatly mitigated. To evaluate the performance of our
method, a Noisy LReID Benchmark (NLReID) is proposed which
is inspired by the existing LReID and LNL benchmark configura-
tions [26, 47]. Extensive experimental results under various noisy
conditions demonstrate the superiority of our CKP model.

In summary, the contributions of this work are three-fold: (1) We
provide a pioneer investigation on the important and challenging
Noisy LReID task, and a comprehensive Noisy LReID benchmark
(NLReID) is proposed for the evaluation of different methods. (2) To
handle the catastrophic remembering and forgetting issues, a novel
Continual Knowledge Purification (CKP) method is proposed. A
Cluster-aware Data Purification module and an Iterative Label Rec-
tification pipeline are designed to obtain cleaner training data for
correct new knowledge learning and mitigating erroneous new
knowledge acquisition. Besides, an Erroneous Knowledge Filtering
algorithm is developed to actively forget erroneous old knowledge
and ensure correct new knowledge remembering. (3) Extensive
experiments demonstrate that our CKP achieves state-of-the-art
Noisy LReID performance, and the proposed method can be read-
ily integrated with the latest LReID or LNL approaches to further
improve the performance in the noisy LReID scenario.

2 Related Work
2.1 Lifelong Person Re-Identification
Lifelong person re-identification (LReID) [26, 39] aims to train a
ReID model with non-stationary data, improving the model’s adapt-
ability to various conditions. Existing LReID works [6, 26–28, 33, 39,
51] primarily focus on alleviating the catastrophic forgetting prob-
lem, which indicates that the performance of themodel on historical
data is degraded greatly when the new data is learned [13, 34, 37, 46].
Nevertheless, these methods assume that the training data are all
correctly annotated [26, 39]. However, in real scenarios, the training
data labels are often noisy due to inaccurate person detection or
annotation errors [3, 4, 47]. Such a Lifelong Person Re-Identification
with the Noisy Label (Noisy LReID) scenario is more challenging
since not only the correct knowledge catastrophic forgetting exacer-
bated due to erroneous new knowledge continually overwriting the
correct old knowledge, but also catastrophic remembering [15, 53]
issues occur as the erroneous knowledge from different domains
accumulates, resulting in degraded performance on new domains.
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Figure 2: Given the noisy dataset Dt at the t-th LReID step, our CKP updates the rectified dataset De
t and modelMe

t along the
training epoch e. CDP aims to obtain a clean subset De∗

t for Me
t learning. Besides, EKF aims to filter the features containing

erroneous old knowledge. Finally, ILR rectifies the noise labels by fusing the learning knowledge and label information.

2.2 Label Noise Learning
Label Noise Learning (LNL) has been widely investigated in recent
years [17, 32, 57]. Most existing LNL methods rely on identity pre-
diction [12, 44, 47] or loss regularization strategies [22, 48, 50] to
filter noisy data or accomplish noise-robust learning. For example,
LCNL [45] adopts GaussianMixture Model (GMM) [35, 44] to model
the loss distribution and select the unreliable samples. However,
existing works reveal that there is a discrepancy between the predic-
tion score/loss and the actual identity distribution [36]. Specifically,
the noisy samples around the distribution boundary exhibit similar
prediction scores or regularization effects compared to the clean
ones. Thus, these samples can easily be confused with clean labels. ,
resulting in inaccurate filtering or invalid regularization. Therefore,
the learned models still contain considerable erroneous knowledge,
and the catastrophic remembering problem is still critical.

2.3 Lifelong Learning with Label Noise
Lifelong Learning with Label Noise problem has yet to gain wide-
spread attention and existing solutions focus on classification task [9,
14, 16]. These methods rely on filtering and retaining historical ex-
emplars to address the catastrophic forgetting issue during lifelong
learning. However, as human images are highly privacy-sensitive
data, retaining historical exemplars is not feasible in many actual
applications [26, 33]. Therefore, in this paper, we provide a pioneer
investigation of the Noisy LReID problem, the catastrophic forget-
ting of correct knowledge and the catastrophic remembering of
erroneous knowledge under such a scenario is thoroughly discussed,
and a novel exemplar-free Noisy LReID method is proposed.

3 Continual Knowledge Purification for Noisy
LReID

3.1 Problem Definition and Formulation
Noisy lifelong person re-identification (Noisy LReID) aims to con-
tinually learn from a stream of T ReID datasets Dtr = {Dt }

T
t=1,

each containing a certain ratio of noisy labels. The effectiveness of
the final model is evaluated on the clean test sets Dte = {Dte

t }Tt=1
corresponding to each domain, to evaluate the new knowledge
acquisition and anti-forgetting capacity of the model. Besides, a
series of additional U clean test sets Dun = {Dun

t }Ut=1 are tested
to evaluate the generalization of the models on unseen domains. In
this paper, the model learned after training step t is denoted asMt
and the intermediate model after each training epoch e is denoted
asMe

t . The parameters ofM0
t are initialized withMt−1.

3.2 Overview
As is shown in Figure 2, given the noisy training dataset Dt at
training step t , our overall approach generates a rectified datasetDe

t
at the training epoch e , where D0

t is initialized with original noisy
data Dt . The proposed Continual Knowledge Purification (CKP)
framework consists of three key components, i.e., Cluster-aware
Data Purification (CDP), Erroneous Knowledge Filtering (EKF), and
Iterative Label Rectification (ILR). Specifically, the CDP module
aims to estimate label confidence for each instance and generate
a clean subset De∗

t to ensure accurate new data learning. Then,
EKF is employed to estimate the knowledge correctness of the old
model features, so that the erroneous knowledge could be actively
forgotten and the correct new knowledge could be consolidated.
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Besides, at the end of the e-th epoch, the IRL pipeline is adopted
to rectify the noisy labels by fusing the model prediction and label
information, resulting in the rectified dataset De+1

t for subsequent
epochs. Since the label confidence estimation function serves as
a crucial component for CDP and EKF modules, we introduce the
proposed Cluster-aware Label Scoring (CLS) strategy first and then
depict the designs of CDP, EKF, and ILR sequentially.

3.3 Cluster-aware Label Scoring
In this work, we propose to utilize clustering [43] technology to
gather instances with shared characteristics to achieve reliable
label confidence estimation. Specifically, given the noisy dataset
{(xi ,yi )}

N t

i=1 with Nt images xi and corresponding labels yi , the ex-
tracted features are { fi }Nt

i=1. The DBSCAN algorithm [30] is adopted
to generate clusters with different shared characteristics and each
instance is assigned a cluster-aware label ỹi ∈ {1, 2, ...,Nc } where
Nc is the cluster number. Note that the outliers during the cluster-
ing process are collected as an extra cluster whose label is set to Nc .
Then, we generate one-hot embedding l i ∈ RNc for all instances.

Then, to bridge the connection between the annotated label and
the generated cluster label, an annotation-aware average cluster
label l i for each instance xi is calculated by

l i =
1
nit

Nt∑
j=1

δ (yi ,yj )l j , (1)

where nit =
∑Nt
j=1 δ (yi ,yj ), and δ (yi ,yj ) is a sign function that

outputs 1 and 0 when yi = yj and yi , yj respectively. Equation (1)
indicates that given xi with annotated label yi , obtain the average
cluster label of all instances x j that possess the same annotated
label as yi . Therefore, l i is consistent across instances with the
same annotated label, representing the aggregate value of each
annotated label in the cluster label space.

To quantify the label confidence of each instance xi , the label
distance di is defined as the squared L2 norm between li and l i ,
represented as:

di = | |l i − l i | |
2
2 , (2)

wheredi measures the disparity between the cluster label ỹi and the
annotated identity centers. Note that di ∈ [0, 2) and the di values
of outliers during clustering are adjusted to 2. This adjustment is
made because the outliers exhibit minimal resemblance to other
instances and thus possess the lowest confidence.

Then the annotated label confidence score si is calculated by

si = (2 − di )/2, (3)

where si ∈ [0, 1] with higher values indicating greater trustworthi-
ness of the annotated label.

Discussion: Existing label confidence scoring methods primar-
ily utilize the Gaussian Mixture Model (GMM) to model the noise
distribution for clean data selection [12, 45]. However, since there is
a discrepancy between the model loss and the identity correctness
distribution [36], GMM can reserve many noisy samples, thereby
limiting the new knowledge acquisition and correct knowledge anti-
forgetting capacity (Figure 1 (a)(b)). However, the elaborately de-
signed CLS strategy can effectively mine fine-grained inter-instance

similarity to evaluate identity coherence across instances, there-
fore the intra-identity distribution is fully modeled and utilized to
enhance the reliability of label confidence estimation results.

3.4 Cluster-aware Data Purification
In this paper, given the noisy dataset Dt , we iteratively update
the labels of the images as introduced in Section 3.6. The updated
dataset after e-th epoch is denoted as De

t . As is shown in Figure 2,
at the e-th epoch, De−1

t and Me−1
t is used to process the images

and obtain the features F e
t = { f it }

Nt
i=1. Then the CLS strategy is

adopted to process F e
t to get the label confidence si of each image

xi .
Then, we remove the data of low-confidence labels with a confi-

dence threshold Tc and obtain the clean subset De∗
t :

De∗
t = {(xi ,yi )}

N ∗
t

i=1, (4)

where each instance xi in De∗
t has the si higher than Tc and N ∗

t is
the selected instance number.

3.5 Erroneous Knowledge Filtering
The knowledge distillation [7] strategy is awidely-used anti-forgetting
approach adopted by the existing LReID methods [6, 26, 33, 39].
Despite its knowledge consolidation capacity, such a strategy can
lead to erroneous knowledge accumulation and even mislead the
learning of the new data, as shown in Figure 1 (d).

Therefore, in this section, we aim to filter the features of samples
that reflect the learned correct knowledge of old modelMt−1 and
discard the features that contain erroneous knowledge contained
inMt−1. Specifically, given the clean subset De∗

t , we utilizeMt−1 to
process the De∗

t and the generated features { f it−1}
N ∗
t

i=1 are fed into
the CLS (Section 3.3), where the obtained scores of each instance is
named feature confidence soi . Then a knowledge distillation weight
wo
i is assigned to each instance xi by

wo
i =

{
0 soi ≤ To

1 soi > To
, (5)

where To is the hyperparameter serving as the threshold of soi .
Notably,wo

i = 0 indicates that the old knowledge can not correctly
process the instance xi , thus f it−1 primarily contains erroneous old
knowledge and should be discarded during knowledge distillation.

Then we proposed a weighted knowledge distillation lossLwKD
to ensure correct old knowledge transfer and active erroneous old
knowledge forgetting. Considering there are primarily two kinds
of knowledge distillation loss, i.e. logits-based and inter-instance
relation-based. We design the LwKD variants accordingly.

Specifically, as for logits-based knowledge distillation loss [23,
26],wo

i serve as the weight of each instance directly:

LwKD−lдs = w
o
i LKD (Mt−1(xi ),M

e
t (xi )), (6)

where LKD is a ordinary loss function, e.g., KL-diverigence [42],
MSE [25]. As for the inter-instance relation-based knowledge distil-
lation, given a batch of instances B, a maximum subset Bo where
each instance withwo

i = 1 is selected to calculate the inter-instance
relation loss:

LwKD−r el = LKD (θr (Mt−1 (Bo ) ,Mt (Bo ))) , (7)
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Table 1: Results under the Random Noise. † indicates the state-of-the-art LNL method is combined with the latest anti-
forgetting strategy of LSTKC.

Metric Type Method
Market-1501 CUHK-SYSU DukeMTMC MSMT17 CUHK03 Seen-Avg Unseen-Avg

10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%

m
A
P

LR
eI
D

LwF [23] 49.2 29.1 19.2 66.2 53.7 47.7 19.0 9.8 7.5 3.6 1.9 1.3 17.3 8.9 6.1 31.1 20.7 16.4 35.4 25.6 20.2
PatchKD [33] 51.0 30.6 23.9 66.8 58.0 52.6 19.3 11.9 8.4 3.6 2.1 1.5 18.1 10.3 6.4 31.8 22.6 18.6 35.0 27.3 23.8
KRKC [51] 29.4 20.1 14.8 71.7 65.3 59.2 23.3 15.3 10.3 5.1 3.1 2.2 35.3 20.9 12.7 33.0 24.9 19.8 42.5 35.4 29.0
DKP [41] 43.2 28.1 20.4 78.4 71.0 66.7 34.8 22.5 15.4 12.8 7.7 5.5 21.2 10.7 6.6 38.1 28.0 22.9 47.4 37.6 32.5
LSTKC [42] 41.4 35.1 25.8 78.7 74.2 67.4 39.7 19.4 9.3 14.8 5.2 2.6 27.8 15.3 6.9 40.5 29.8 22.4 47.2 37.0 30.0

LN
L CORE [47] 35.5 29.4 23.7 75.7 73.7 69.2 36.3 30.4 22.1 12.5 9.9 6.5 41.8 35.2 24.9 40.4 35.7 29.3 51.1 47.3 40.4

DICS [22] 34.0 23.1 15.7 72.1 70.1 63.6 34.8 22.3 13.1 12.2 7.3 4.5 35.5 18.5 9.3 37.7 28.3 21.2 48.0 38.8 32.2

N
oi
sy

LR
eI
D DICS† [22] 38.3 38.3 29.4 73.4 73.4 67.4 37.1 37.1 14.0 8.8 8.8 3.2 13.1 13.1 6.4 34.1 34.1 24.1 41.5 41.5 32.7

CORE† [47] 48.9 45.2 37.8 81.6 80.2 74.7 46.2 37.1 21.3 18.2 10.5 5.5 35.5 23.9 15.3 46.1 39.4 30.9 52.9 47.2 40.7
LCNL†[45] 28.9 23.5 16.2 69.2 67.9 63.1 29.4 20.0 11.6 9.7 6.8 4.3 38.1 27.8 18.6 35.1 29.2 22.8 45.1 38.4 33.8

CKP (Ours) 48.7 44.5 42.2 80.8 80.3 78.6 47.3 44.4 42.1 18.1 16.4 14.6 42.0 36.3 33.5 47.4 44.4 42.2 56.0 51.4 50.4

R@
1

LR
eI
D

LwF [23] 74.2 55.9 43.0 69.9 57.4 51.4 35.5 20.3 17.9 11.3 6.7 5.0 17.4 8.6 5.5 41.7 29.8 24.6 28.9 20.5 15.5
PatchKD [33] 74.2 56.9 49.5 70.5 61.7 56.0 34.1 23.1 18.1 11.0 7.2 5.5 17.2 9.8 5.9 41.4 31.7 27.0 29.6 21.7 18.9
KRKC [51] 54.0 42.0 34.4 75.1 68.8 63.4 38.4 28.0 19.8 14.9 9.8 7.5 37.1 19.6 11.1 43.9 33.6 27.2 36.9 29.4 24.3
DKP [41] 68.7 54.3 45.7 81.1 74.8 70.4 53.9 39.5 30.4 32.5 23.3 18.2 20.4 9.9 5.5 51.3 40.4 34.0 41.0 32.0 26.8
LSTKC [42] 66.8 60.5 50.2 81.3 77.6 70.9 59.3 34.0 19.5 35.5 16.2 8.8 27.7 14.6 6.2 54.1 40.6 31.1 40.3 30.7 25.0

LN
L CORE [47] 63.0 55.8 49.8 78.7 77.0 72.6 56.7 48.9 38.8 32.9 26.9 19.0 43.1 36.2 24.1 54.9 49.0 40.9 44.7 41.7 34.5

DICS [22] 58.6 48.5 38.2 74.9 74.2 67.9 55.7 40.6 27.2 33.1 23.0 16.6 36.3 18.3 8.6 51.7 40.9 31.7 42.0 33.4 27.3

N
oi
sy

LR
eI
D DICS† [22] 65.6 65.6 56.4 76.8 76.8 70.9 57.3 57.3 28.1 26.7 26.7 12.4 12.8 12.8 6.2 47.8 47.8 34.8 34.9 34.9 27.3

CORE† [47] 72.6 69.9 62.8 83.9 83.0 77.4 63.8 55.5 37.5 41.0 27.1 16.8 36.4 22.9 14.7 59.5 51.7 41.8 46.0 40.9 35.3
LCNL†[45] 55.3 48.8 37.6 72.7 71.8 66.9 49.1 36.3 23.1 27.6 21.0 14.7 39.7 29.4 18.9 48.9 41.5 32.2 38.4 32.6 28.5

CKP (Ours) 71.8 68.1 66.9 83.2 83.0 81.0 64.7 62.1 58.9 40.1 37.5 34.7 42.4 37.1 34.1 60.4 57.6 55.1 49.5 44.6 43.4

where θr is a relation evaluation function [42] andLKD is a relation
knowledge distillation loss [33].

3.6 Iterative Label Rectification
Although the above CDP and EKF modules could ensure the model
learning the correct knowledge, the wrongly labeled data which can
contain abundant information are discarded. To settle this draw-
back, we propose to rectify the annotated data iteratively along the
model learning epochs, ensuring the correct knowledge learning
and enhancing informative data utilization simultaneously.

Specifically, the label rectification is accomplished by

y∗i = argmax{yi ∗wl + ŷi ∗ (1 −wl )}, (8)

where yi ∈ RNp is a one-hot embedding generated from annotated
label yi in De

t and Np is the annotated person identity number.
The label rectification weight wl aims to fuse the information of
annotation and prediction. ŷi ∈ RNp is the identity prediction
vector generated byMe

t . y
∗
i is utilized to replace yi in De

t to obtain
new dataset De+1

t . Note that ILR is not necessarily conducted after
each epoch, and a rectification interval of e0 epochs is adopted for
computational efficiency.

Model Training During training, our framework can be inte-
grated with existing LReID and LNL methods by introducing their

noisy data learning loss LReID and our weighted knowledge distil-
lation loss LwKD (Equation (6) and (7)). Therefore, the overall loss
is calculated by:

L = LReID + LwKD . (9)

Model Inference We follow existing methods [42] to use the
feature generated by the final modelMT for person matching.

4 Experiments
4.1 Benchmark
In this paper, following the existing LReID [26] and Noisy ReID [47]
works, a Noisy LReID benchmark (NLReID) is proposed as below.

Datasets: NLReID contains 12 ReID datasets, 5 of them are used
for lifelong training and evaluation (Market1501 [58], DukeMTMC-
reID [29], CUHK-SYSU [40], MSMT17-V2 [38], and CUHK03 [20]),
and the other 7 test datasets are used evaluate the generalizability
of the model (CUHK01 [19], CUHK02 [18], VIPeR [8], PRID [11],
i-LIDS [2], GRID [24], and SenseReID [55]). The clean identity
configuration of each dataset follows the setting of LReID [26].

Label Noise Generation: Two different noisy settings are con-
sidered [47]. (1) Random Noise means a certain percentage (10%,
20%, 30%) of training data are assigned with random labels of other
identities. (2) Patterned Noise means a certain percentage (10%, 20%,
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Table 2: Results under the Patterned Noise. † indicates the state-of-the-art LNL method is combined with the latest anti-
forgetting strategy of LSTKC.

Metric Type Method
Market-1501 CUHK-SYSU DukeMTMC MSMT17 CUHK03 Seen-Avg Unseen-Avg

10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%

m
A
P

LR
eI
D

LwF [23] 47.8 33.2 17.4 60.8 47.3 32.5 22.6 11.6 5.9 4.4 2.0 1.0 11.9 5.7 3.3 29.5 20.0 12.0 35.4 23.8 19.0
PatchKD [33] 50.6 34.2 18.9 62.1 48.2 34.7 22.1 12.1 5.9 4.5 2.2 1.1 11.4 5.5 2.9 30.1 20.4 12.7 35.1 25.5 18.5
KRKC [51] 31.9 22.3 18.0 73.1 66.7 63.5 27.1 16.2 10.4 5.7 3.4 2.6 39.1 24.8 16.1 35.4 26.7 22.1 45.4 36.9 31.9
DKP [41] 46.1 33.7 27.4 80.3 73.8 70.1 37.4 26.1 20.3 14.2 9.2 7.2 24.8 14.9 9.3 40.6 31.5 26.9 50.5 41.2 36.7
LSTKC [42] 40.3 36.0 33.2 78.3 75.4 71.6 38.3 30.6 18.0 15.2 8.0 4.4 30.2 20.0 13.2 40.5 34.0 28.1 50.8 42.2 37.9

LN
L CORE [47] 35.7 33.4 30.1 75.8 74.8 73.3 36.9 30.9 29.2 13.5 11.1 9.3 42.4 37.7 31.5 40.9 37.6 34.7 52.2 46.5 45.0

DICS [22] 32.3 26.1 19.1 69.3 71.3 67.3 34.2 26.6 16.1 10.8 9.5 5.7 35.8 23.6 13.2 36.5 31.4 24.3 45.9 43.7 35.8

N
oi
sy

LR
eI
D DICS† [22] 40.5 39.5 31.4 77.4 75.0 68.1 40.1 39.5 33.8 16.4 9.0 6.9 33.7 21.1 16.4 41.6 36.8 31.3 52.7 47.4 41.1

CORE† [47] 49.0 49.6 45.4 80.8 80.0 79.0 46.4 42.2 38.7 19.2 9.2 10.8 39.5 32.2 21.7 47.0 42.6 39.1 55.8 48.6 47.6
LCNL†[45] 29.6 25.9 21.1 68.4 67.6 65.6 29.2 23.0 19.6 9.7 7.6 6.2 38.5 31.5 23.6 35.1 31.1 27.2 45.1 40.7 38.0

CKP (Ours) 50.1 46.9 44.1 81.0 79.9 78.9 47.2 45.2 43.1 18.3 17.1 15.7 41.9 39.9 36.6 47.7 45.8 43.7 57.3 54.4 51.1

R@
1

LR
eI
D

LwF [23] 72.0 59.8 37.5 63.8 49.3 32.7 42.1 25.0 14.5 14.5 7.0 4.4 12.8 6.7 3.8 41.0 29.6 18.6 28.3 17.8 13.7
PatchKD [33] 74.6 60.2 40.8 64.7 50.9 36.4 40.8 26.8 15.7 14.2 7.7 4.6 11.6 6.1 3.2 41.2 30.3 20.1 28.9 20.1 13.1
KRKC [51] 57.5 44.7 38.5 76.5 70.4 67.0 43.4 28.6 20.0 16.2 10.9 8.6 40.3 23.9 15.9 46.8 35.7 30.0 38.5 32.2 27.0
DKP [41] 71.1 60.2 53.8 82.9 77.2 74.1 55.4 42.8 36.8 34.8 25.9 21.5 24.8 14.3 7.6 53.8 44.1 38.8 43.4 35.9 30.7
LSTKC [42] 65.2 59.9 58.1 80.8 78.0 74.8 56.3 48.6 32.4 36.8 22.5 13.6 31.3 20.5 12.9 54.1 45.9 38.4 44.3 36.1 32.2

LN
L CORE [47] 63.4 60.1 57.1 78.7 77.9 76.7 57.3 50.7 46.7 34.1 29.6 25.6 43.8 38.2 32.4 55.5 51.3 47.7 45.9 40.1 38.9

DICS [22] 57.3 51.9 43.2 72.5 75.0 71.3 55.1 44.5 31.2 29.7 28.4 19.3 36.4 24.1 13.0 50.2 44.8 35.6 38.7 37.3 30.3

N
oi
sy

LR
eI
D DICS† [22] 65.7 64.5 58.9 79.5 78.0 71.9 58.8 59.2 54.8 40.1 26.8 22.9 35.1 21.6 16.4 55.8 50.0 45.0 46.5 40.9 35.0

CORE† [47] 72.6 72.8 69.9 82.8 82.3 81.6 65.0 59.0 56.3 43.4 24.6 28.1 40.5 31.9 21.2 60.9 54.1 51.4 48.7 42.1 40.8
LCNL†[45] 55.8 51.6 47.0 71.5 71.1 69.5 49.2 41.1 35.7 27.2 23.0 19.4 39.6 33.3 24.6 48.7 44.0 39.2 38.4 34.9 32.3

CKP (Ours) 73.2 70.8 67.5 82.7 82.3 81.4 65.8 62.5 61.2 41.0 38.9 36.7 42.7 40.8 37.0 61.1 59.1 56.8 50.1 47.5 44.6

Figure 3: Seen domain knowledge consolidation capacity un-
der 30% random noise.

30%) of training images are assigned with the labels of its most sim-
ilar sample from other identities where the similarity is evaluated
by a base model pre-trained with clean labels.

EvaluationMetrics: Following existing LReIDworks [6, 26, 33],
the mean Average Precision (mAP) and Rank@1 accuracy (R@1)
are adopted to evaluate the model performance on each seen and un-
seen dataset. Additionally, the seen/unseen average mAP and R@1

are reported to compare the lifelong learning and generalization
capacity of the models across different scenarios.

4.2 Implementation Details
The state-of-the-art LReID method [42] is used as our baseline.
During training, the first dataset is trained for 80 epochs and the
subsequent datasets are trained for 60 epochs. 32 identities with 4
images for each identity are sampled as a mini-batch. The learning
rate and weight decay are set as 0.008 and 0.0001 respectively, and
an SGD optimizer is adopted. The hyperparameters Tc , To ,wl , and
e0 are set to 0.8, 0.2, 0.1, and 5 respectively.

4.3 The Comparison Methods
To comprehensively evaluate our method, extensive state-of-the-
art LReID approaches (PatchKD [33], KRKC [51], LSTKC [42] and
DKP [41]) are compared. The well-known class incremental learn-
ing method LwF [23] is also included. In addition, we combine the
state-of-the-art LReID method, LSTKC, with the latest noisy label
learning methods (LCNL [45], DICS [22], and CORE [47]) to adapt
them to the Noisy LReID scenario. All the methods above are im-
plemented with the official codes, and we ensure a fair comparison
by adopting the same backbone and data configurations.
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Figure 4: Unseen domain generalization capacity under 30%
random noise.

4.4 Comparison with state-of-the-art methods
The results of different methods on the NLReID benchmark are
reported in Table 1 and Table 2 under different ratios of random and
patterned noise respectively. The best results under each scenario
are highlighted in Bold.

Compared to LReID Methods: As shown in Table 1 and Ta-
ble 2, our CKP achieves significantly superior performance on the
average performance of both seen and unseen domains compared to
LReID methods. Specifically, when the random noise ratio increases
from 10% to 30%, these methods exhibit degradation in averagemAP
and R@1 performance ranging from 12%-21% on both seen and
unseen domains. In contrast, our model experiences no more than
6.1% degradation, attributed to the effectiveness of the new data
purification and erroneous old knowledge filtering designs.

Compared to LNL Methods: In Table 1 and Table 2, our CKP
outperforms state-of-the-art LNLmethodCORE significantly. Specif-
ically, CKP achieves averagemAP/R@1 improvement of 12.9%/14.2%
and 10.0%/8.9% under seen and unseen domains when learning
under 30% random noise, and 12.4%/9.1% and 10.0%/5.7% improve-
ment when learning under 30% patterned noise is obtained. The
results arise because LNL methods are designed for stationary sce-
narios, neglecting the catastrophic forgetting of correct knowledge
and the catastrophic remembering of erroneous knowledge.

Compared toNoisy LReIDMethods:We incorporate the anti-
forgetting strategy of the latest LReID method LSTKC, into LNL
methods, obtaining the Noisy LReID approaches DICS†, CORE†,
and LCNL†. Among them, CORE† exhibits the highest average
performance on different settings. As is shown in Table 1, com-
pared to CORE† under random noise, we achieve the improvement
of 1.3%/0.9%, 5.0%/5.9%, and 11.3%/13.3% on average mAP/R@1
performance in seen domains under noise ratios of 10%, 20%, and
30%, respectively. Additionally, we also obtain the improvement of
3.1%/3.5%, 4.2%/3.7%, and 9.7%/8.1% in the average mAP/R@1 per-
formance of unseen domains under noise ratios of 10%, 20%, and
30%, separately. As is shown in Table 2, under the challenging pat-
terned noise, our CKP consistently obtains 0.7%/0.2%, 3.2%/5.0%,
and 4.6%/5.4% improvement on the average mAP/R@1 of seen do-
mains under 10%, 20%, and 30% noise. The increasing improvement
under higher noise ratios highlights the superiority of our method

Table 3: Ablation study of different components in CKP un-
der 30% random noise.

Seen-Avg Unseen-Avg
Baseline CDP ILR EKF mAP R@1 mAP R@1

✓ 30.9 41.8 40.7 35.3
✓ ✓ 38.8 51.6 47.3 40.2
✓ ✓ 34.5 45.7 43.5 37.4
✓ ✓ 34.8 46.1 43.8 37.3
✓ ✓ ✓ 41.9 54.7 49.2 43.1
✓ ✓ ✓ ✓ 42.2 55.1 50.4 43.4

in mining correct knowledge and reducing the remembering of
erroneous knowledge in noisy scenarios.

Seen Domain Performance Curves. To show the new knowl-
edge acquisition and anti-forgetting capacity of different models,
We test the models on seen domains after each learning stage. The
results are shown in Figure 3. Compared to the competitors, our
method outperforms them in the first dataset and maintains superi-
ority throughout the training process. These results show that our
proposed method could consistently consolidate correct knowledge
by learning from the noise data of various domains.

Unseen Domain Generalization Curves. We further visual-
ize the average performance on the unseen domains along the life-
long training steps, as depicted in Figure 4. The results demonstrate
that our proposedmodel outperforms existingmethods in capturing
more generalizable knowledge when learning from non-stationary
noisy data. This result is attributed to the knowledge purification
mechanism of our model that ensures correct knowledge mining
and erroneous knowledge filtering.

4.5 Ablation Studies
In this section, we evaluate and discuss the effectiveness of our pro-
posed components. All experiments are conducted on 30% random
noise data in the NLReID benchmark.

Ablations on different components. In Table 3, we start with
a CORE† baseline and progressively integrate the proposed CDP,
ILR, and EKF modules. The results illustrate that each module im-
proves the model performance when utilized independently, and
their combined utilization further boosts performance. Particularly
noteworthy is the significant improvement yielded by CDP, under-
scoring the critical importance of ensuring training data clarity in
mitigating label noise impact.

Ablations on hyperparameters. We analyze the effects of the
hyperparameters Tc , To ,wl , and e0, on the model in Figure 5. The
results in Figure 5 (a) show that a relatively high Tc helps improve
the overall performance of the model, highlighting the importance
of training data purity. In Figure 5 (b), we observe that an opti-
mal To tends to be relatively small, as some features may contain
both correct and erroneous knowledge simultaneously. And To=0.2
shows the best balance. The results in Figure 5(c) suggest that a
relatively lowwl is optimal for label rectification, indicating that
the model prediction is more reliable than the annotated label, yet
the annotated label still contains some crucial clues that could rem-
edy the imperfect predictions of the model. Figure 5 (d) shows that
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(a) label confidence threshold Tc (b) feature confidence threshold To (c) label rectification weightwl (d) label rectification interval e0

Figure 5: Ablation studies on hyperparameters under 30% random noise. Dashed green lines highlight our default values.
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Figure 6: The proposed CKP can be readily integrated with
existing LReID and LNL methods to significantly improve
their Noisy LReID performance.

frequently rectifying the label is not necessary and a rectification
interval of 5 epochs is enough to guarantee the performance. In
practice, we set Tc , To ,wl , and e0 to 0.8, 0.2, 0.1, and 5 respectively.

Combination with other methods. As is shown in Figure 6,
when our method is combined with existing methods, 8.6%-17.7%
improvement is achieved. CORE† and CORE‡ represent integrating
CORE with the anti-forgetting strategy of LSTKC and DKP, respec-
tively. Note that LSTKC and DKP are inter-instance relation-based
knowledge distillation methods and LwF is logits-based knowledge
distillation method. These results demonstrate the compatibility of
our method with different anti-forgetting strategies.

Effectiveness of Cluster-aware Label Scoring. To evaluate
the identity confidence estimation capability of our CLS strategy
which plays an important role in our CDP and EKF, we experimen-
tally replace CLS with the widely-used Gaussian Mixture Model
(GMM) in our approach. Figure 7 (a) illustrates the tendency of
label scoring AUC across training epochs. Initially, GMM performs
slightly better, but as the model begins to overfit the label noise, its
label scoring capacity diminishes after the 10th epoch. In contrast,
our CLS consistently improves its AUC performance and surpasses
GMM after the 20th epoch. This shows the superiority of our CLS
in guiding the algorithms to collect clean data. Furthermore, we
visualize the ROC curves of the predicted identities generated by

(a) Label scoring AUC tendency. (b) Model prediction ROC curve.

Figure 7: Effectiveness of proposed CLS compared to GMM
under 30% random noise.

the final models in Figure 7 (b). Thus, it is evident that our CLS
effectively guides the model to learn the correct knowledge.

5 Conclusion
In this paper, we initially investigate a practical task named Noisy
Lifelong Person Re-Identification (Noisy LReID), which suffers ex-
acerbated correct knowledge catastrophic forgetting and additional
erroneous knowledge catastrophic remembering problems. To fa-
cilitate research in Noisy LReID, we introduce a benchmark named
NLReID. In addition, we propose a novel and effective Continual
Knowledge Purification (CKP) framework. To reduce the erroneous
knowledge acquisition, an Iterative Label Rectification pipeline, and
a Cluster-aware Data Purification module are designed to rectify
the noise labels and collect clean data along the training procedure
to mitigate the influence of noisy data on new knowledge learning.
Besides, to handle the catastrophic remembering and forgetting
issues, an Erroneous Knowledge Filtering algorithm is proposed
to reduce erroneous old knowledge accumulation and ensure cor-
rect knowledge consolidation. Extensive experiments show our
method is robust to different kinds of label noise and achieves sig-
nificant Noisy LReID performance improvement, especially under
high-ratio noise compared to existing methods.
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