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Abstract

The recent large-scale pre-trained models like CLIP have
aroused great concern in vision-language tasks. However,
when required to match image-text data collected in a stream-
ing manner, namely Continual Vision-Language Retrieval
(CVRL), their performances are still limited due to the catas-
trophic forgetting of the learned old knowledge. To han-
dle this issue, advanced methods are proposed to distil the
affinity knowledge between images and texts from the old
model to the new one for anti-forgetting. Unfortunately, ex-
isting approaches neglect the impact of incorrect affinity,
which prevents the balance between the anti-forgetting of
old knowledge and the acquisition of new knowledge. There-
fore, we propose a novel framework called Dynamic Knowl-
edge Rectification (DKR) that simultaneously achieves in-
correct knowledge filtering and rectification. Specifically, we
first filter the incorrect affinity knowledge calculated by the
old model on the new data. Then, a knowledge rectification
method is designed to rectify the incorrect affinities while
preserving the correct ones. In particular, for the new data
that can only be correctly retrieved by the new model, we
rectify them with the corresponding new affinity to protect
them from negative transfer. Additionally, for those that can
not be retrieved by either the old or the new model, we intro-
duce paired ground-truth labels to promote the acquisition of
both old and new knowledge. Extensive experiments on sev-
eral benchmark datasets demonstrate the effectiveness of our
DKR and its superiority against state-of-the-art methods.

Introduction
In recent years, the pre-trained CLIP model (Radford et al.
2021) has become a milestone for vision-language retrieval,
where an image is retrieved via a text description of its
contents or vice versa. Owing to the large-scale pre-trained
dataset, CLIP has demonstrated its promising ability to
tackle new datasets in a zero-shot manner but still suffers
from inadequate performance (Gu et al. 2021; Xu et al.
2022; Wu et al. 2023). Hence, various works adopt fine-
tuning and adapter strategies to improve the performance
of the pre-trained CLIP model on new datasets (Gao et al.
2023a; Luo et al. 2022; Zhang et al. 2022). However, when
facing a practical and crucial scenario where a series of
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Figure 1: Challenges in CVLR. In addition to the unseen
class label concerned by CIL, CVLR involves the unseen
class combination and the unseen class distribution.

datasets come one by one, the above strategies always fail to
handle all the datasets well. Their performance can be signif-
icantly degraded on the learned old datasets due to the well-
known catastrophic forgetting challenge (De Lange et al.
2021). Therefore, in this paper, we focus on adapting CLIP
to new datasets while maintaining its performance on old
datasets, known as the task of Continual Vision-Language
Retrieval (CVLR).

So far, most continual learning works focus on how to
achieve the anti-forgetting of class information of the im-
ages in the learned old datasets (Masana et al. 2022) which
is also known as class incremental learning (CIL). However,
the existing CIL methods can not be directly used to handle
the CVLR task. As shown in Fig. 1, on the one hand, images
and text descriptions in the CVLR task do not have the nec-
essary category label information for CIL, which prevents
correctly matching images with corresponding descriptions.
On the other hand, CVLR exhibits a more complicated sce-
nario where the text description usually meets the unseen
class label, the unseen class combination, and the unseen
class distribution. These challenges leave the CVLR task
still an unsolved problem.

To tackle the above challenges, knowledge distillation has
become an effective solution to CVLR task (Wang, Herranz,
and van de Weijer 2021; Srinivasan et al. 2022; Dong et al.
2021; Ni et al. 2023), which involves transferring old knowl-
edge learned by the old model to the new model. Recent
works (Dong et al. 2021; Ni et al. 2023) regarded the affinity
relationship between image-text pairs calculated by the old
model as old knowledge and developed knowledge distilla-
tion to alleviate the catastrophic forgetting problem. How-
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Figure 2: Existing CVLR methods fail to deal with the incor-
rect affinity calculated by the old model, thereby limiting the
acquisition of both old and new knowledge. In contrast, we
rectify those incorrect affinities and distil them into a new
model to solve the above problem.

ever, as shown in Fig. 2, these existing methods neglect the
impact of incorrect affinity when distilling old knowledge,
thereby limiting the acquisition of both old and new knowl-
edge. Although the latest research (Ni et al. 2023) prelimi-
narily alleviated this problem by filtering the incorrect affin-
ity, it inevitably leads to the loss of relevant old knowledge.
As a result, existing methods can hardly perform well on
both old and new datasets.

Inspired by the above observation, we propose a novel
framework for the CVLR task, named Dynamic Knowledge
Rectification (DKR). As shown in Fig. 2, the core idea of
DKR is to rectify the incorrect affinity calculated by the
old model while maintaining the correct one. To this end,
a dynamic knowledge filtering and rectification module is
designed to strike the balance between the anti-forgetting
of old knowledge and the acquisition of new knowledge.
Specifically, we first compute an old affinity and a new affin-
ity based on the deep embedding extracted by the old model
and the new model, respectively. Then, for the new data
that can be correctly matched by the old model, DKR di-
rectly maintains the old affinity to avoid forgetting of the
old knowledge. Besides, for those that can only be correctly
retrieved by the new model, DKR exploits the new affinity to
rectify the incorrect part in the old affinity to avoid the nega-
tive transfer of the old knowledge. In addition, for those that
not be retrieved by either the old or the new model, DKR in-

troduces additional knowledge, i.e., the paired ground-truth
label, to promote the acquisition of both old and new knowl-
edge. Then, we combine the rectified results and exploit the
knowledge distillation to constrain the learning process of
the new model. In summary, the main contributions of this
paper are as follows:

1) To alleviate the catastrophic forgetting problem in the
continual vision-language retrieval task, we propose a novel
Dynamic Knowledge Rectification (DKR) framework to dy-
namically filter and rectify incorrect old knowledge, which
strikes the balance between the anti-forgetting of old knowl-
edge and the acquisition of new knowledge.

2) A knowledge rectification method is designed to pro-
tect the new model from negative transfer and promote the
acquisition of both old and new knowledge.

3) Extensive experiments on five real-world vision-
language retrieval benchmark datasets demonstrate the su-
periority of our proposed DKR against the state-of-the-art
methods.

Related Work
Vision-Language Retrieval
Matching the same semantics between images and texts is
the key to vision-language retrieval. Most existing works
calculated the pairwise affinity by extracting and mapping
vision and language features into a common embedding
space. According to different interaction patterns, existing
image-text retrieval methods can be roughly categorized into
two branches: 1) Corss-modal interaction methods. These
methods focus on inferring and aligning the pairwise rela-
tionship across cross-modal entities (Chen et al. 2020a,b;
Li et al. 2020). IMRAM (Chen et al. 2020a) designed an
iterative image-text retrieval framework to capture corre-
spondences by stacking cross-attention neural networks. Al-
though achieving some progress, the redundant computa-
tional cost of calculating the similarity between images and
text limits their practicality (Chen et al. 2021). 2) Intra-
modal representation methods. To tackle the above limita-
tions, methods of this category employ independent repre-
sentation networks for vision and language modalities, thus
improving the inference efficiency (Li et al. 2019; Wang
et al. 2020; Chen et al. 2021). Wang (Wang et al. 2020) fur-
ther exploit a consensus-aware visual-semantic embedding
model to incorporate the commonsense knowledge share be-
tween both modalities. However, the above methods are typ-
ically designed for retrieval in specific datasets.

Recently, large-scale multi-modal pre-trained models (Li
et al. 2021; Radford et al. 2021; Li et al. 2023) have
aroused great concern in the community. CLIP (Radford
et al. 2021) greatly improves the performance of the vision-
language retrieval task through large-scale self-supervised
contrastive learning. These models are usually built with
extremely large-scale vision-language datasets (Ordonez,
Kulkarni, and Berg 2011; Sharma et al. 2018; Schuhmann
et al. 2021)), and show impressive results in multiple down-
stream tasks (Wang et al. 2022; Chowdhury, Zhuang, and
Wang 2022; Luo et al. 2022). However, their performance
can be greatly degraded when it comes to sequentially given
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training datasets due to the catastrophic forgetting problem,
which limits their applicability in real scenarios.

Continual Learning
Continual Learning (CL) (De Lange et al. 2021) aims to en-
able intelligent systems to continuously learn to adapt to new
datasets while preserving old knowledge learned from old
datasets. Most CL methods (Liu et al. 2022; Qiu et al. 2023;
Gao et al. 2023b) are designed for class-incremental learn-
ing, namely CIL, i.e. categories in the new task never ap-
peared in the old task. Qiu (Qiu et al. 2023) devised a causal
intervened learning strategy to eliminate the causal path that
causes the task-induced bias which resulted in the catas-
trophic forgetting problem. Gao (Gao et al. 2023b) trans-
ferred diverse knowledge from both task-specific and task-
general knowledge to the current task to balance the stability
and the plasticity of the old knowledge. However, CIL meth-
ods are not suitable for the CVLR task when considering the
lack of class label information for training and the compli-
cated scenario. To address the above challenge, some meth-
ods employed knowledge distillation strategies (Wang, Her-
ranz, and van de Weijer 2021; Srinivasan et al. 2022; Dong
et al. 2021; Ni et al. 2023) for generalized uses. Dong (Dong
et al. 2021) proposed to distillate relation knowledge be-
tween paired samples to prevent the forgetting of the struc-
tural knowledge. Ni (Ni et al. 2023) maintained the multi-
modal common representation space by aligning the con-
trastive matrices to alleviate the spatial disorder when learn-
ing new knowledge.

Different from these methods, we propose a dynamic
knowledge rectification strategy for CVLR. It can dynam-
ically filter and rectify the incorrect old knowledge, and dis-
til it to the new model in a unified way to strike the balance
between the anti-forgetting of old knowledge and the acqui-
sition of both old and new knowledge.

Proposed Method
Problem Definition and Notations
In this paper, we focus on the challenging Continual Vision-
Language Retrieval (CVLR) task, which assumes the vision-
language data comes in a streaming manner. Specifically,
given a sequentially collected vision-language datasets D =
{D(1),D(2), ...,D(S)}, where S denotes the total length of
the sequence. The s-th dataset D(s) = {(v(s)i , t

(s)
i )}N(s)

i=1

consists of N (s) input images v(s)i and corresponding text
descriptions t(s)i . EachD(s) is randomly divided into a train-
ing set D(s)

train and a testing set D(s)
test. Our goal is to train an

encoding model f(x) : x → ex to map the input sample
x to a deep embedding ex and maximize the similarity be-
tween the embedding of vi and ti. Notably, the previous s−1
datasets are completely unavailable when training on the s-
th dataset, while all s testing sets are jointly used to evaluate
the overall retrieval performance of f(x) to all datasets.

Overview
As shown in Fig. 3, our proposed DKR method consists of a
CLIP-based image encoder, a CLIP-based text encoder, and

a Dynamic Knowledge Rectification (DKR) module. The
encoders are first initialized with the pre-trained parame-
ters, which are then sequentially trained on S datasets. For
the beginning of the training stage s, we preserve a copy
of the encoders as the old model to represent old knowl-
edge. Then, we use the old model and the new model to cal-
culate the affinity between each two image-text samples in
the s-th dataset, which forms an old affinity matrixM(s−1)

and a new affinity matrix M(s), respectively. Sequentially,
the DKR module filters the incorrect affinity in M(s−1),
and dynamically rectifies them with the correct new affinity
and paired Ground-Truth (GT) label to form a rectified old
knowledge matrix M(T ). Finally, DKR distils the knowl-
edge inM(T ) toM(s).

During the training phase, we employ an original con-
trastive loss Lclip to train our model on D(1). When training
the following steps (s >= 2), we add our customized knowl-
edge distillation lossLJS to alleviate the catastrophic forget-
ting problem. During the inference phase, only the trained
encoders are retained to validate the CVLR performance on
all S datasets.

CLIP-based Retrieval Baseline
In this section, we present the CLIP-based retrieval baseline
of our DKR.

Considering that the vision-language retrieval task is
mainly to match paired images and texts, we employ the
CLIP-based encoders to learn the discriminative deep em-
bedding. Formally, let fv(x) and ft(x) be the encoders for
images and texts, respectively. The deep embedding ziv and
zit can be formulated as:{

ziv = fv(vi)

zit = ft(ti).
(1)

To maximize the affinity of the matched image-text pairs, a
contrastive loss Lclip is employed to pull the distance be-
tween the paired samples while pushing the distance of un-
paired samples. The Lclip can be expressed as follows:

Liv = −log(
e〈z

i
v,z

i
t〉/τ∑N

k=1 e
〈zi

v,z
k
t 〉/τ

)

Lit = −log(
e〈z

i
t,z

i
v〉/τ∑N

k=1 e
〈zi

t,z
k
v 〉/τ

)

Lsclip =
∑N
i=1(Liv + Lit)/2,

(2)

where 〈·, ·〉 denotes the dot product of two embedding, N
is the batch size, and τ ∈ R+ is a learnable temperature
parameter.

Dynamic Knowledge Rectification
Although the CLIP-based retrieval baseline shows impres-
sive performance on new datasets, it is still challenging to
maintain its performance on old datasets. Therefore, we pro-
pose a Dynamic Knowledge Rectification (DKR) module to
alleviate the catastrophic forgetting problem. Different from
the common class incremental learning, which can use the
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Figure 3: The framework of our proposed Dynamic Knowledge Rectification (DKR) model. DKR consists of three components:
a CLIP-based image encoder, a CLIP-based text encoder, and a Dynamic Knowledge Rectification (DKR) module. The encoders
embed input data (images and texts) and form two affinity matrices for old and new knowledge. The DKR module dynamically
rectifies the incorrect old knowledge and distils it into the new model.

class prediction results to represent old knowledge, contin-
ual retrieval does not have specific class label information.
Therefore, we first give a definition to the old knowledge
space of the last training stage (s − 1) by an affinity matrix
M(s−1) ∈ RN×N . For convenience, we take the text-to-
image affinity matrix as an example. Then,M(s−1) can be
calculated as follows:

M(s−1)
i,j =

e〈z
i
t,z

j
v〉/τ∑N

k=1 e
〈zi

t,z
k
v 〉/τ

, (i, j ∈ [1, N ]). (3)

Notably, z in Eq. 3 is calculated using the model trained
after the (s− 1)-th stage. Then, we impose a knowledge dis-
tillation LJS based on Kullback-Leibler (KL) divergence to
transfer knowledge from the old model to the new model,
which can be calculated as follows:

LKL(M(x),M(y)) =
∑
M(x)log(

M(x)

M(y)
), (4)

LJS(s− 1, s) =LKL(M(s−1),
M(s−1) +M(s)

2
)

+ LKL(M(s),
M(s−1) +M(s)

2
),

(5)

Note that the weight parameter in the old model is kept con-
stant during the distillation.

However, the distillation in Eq. 5 only holds if the old
knowledge is correct. When the old knowledge cannot cor-
relate paired samples in the new dataset, it will naturally
lead to negative transfer and prevent knowledge acquisi-
tion. Formally, we define elements on the diagonal of M
without the largest affinity as the incorrect knowledge, ie:

i 6= argmax(Mi,1, ...,Mi,N ), while the others as the cor-
rect knowledge. Next, we elaborate on the proposed two
strategies to rectify the incorrect old knowledge.

Rectification with New Knowledge
To prevent the aforementioned negative transfer problem,
we replace the incorrect affinity inM(s−1) with the corre-
sponding correct affinity calculated by the new model. In or-
der to protect the old feature space as much as possible, we
only correct the affinity values on the diagonal as follows:

M(T )
i,i =M(s)

i,i , i 6= argmax(M(s−1)
i,1 , ...,M(s−1)

i,N ). (6)

To promote the transfer of the rectified old knowledge to
new knowledge, we use the newly introduced affinity to con-
strain the off-diagonal old affinity, which eliminates the gap
between the old and new knowledge as follows:

M(T )
i,j =M(s−1)

i,j ×
1−M(s)

i,i

1−M(s−1)
i,i

, i 6= j. (7)

Although the rectified knowledge calculated by Eq. 6 and
Eq. 7 achieve anti-forgetting by exploiting regularized old
off-diagonal affinity, it meanwhile ignores the acquisition of
new knowledge. Therefore, we further enhance the diagonal
affinity by:

M(T )
i,i = 1, (8)

which is crucial to balance the adaptation to the new dataset.
Based on the above strategy, DKR achieves anti-

forgetting by maintaining the relative relationship between
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affinities in the old model. Nevertheless, such a strategy is
still undesirable when it comes to incorrect new knowledge.
For example, when training on a new dataset that differs sig-
nificantly from the old datasets, the new model can hardly
output the correct affinity in time. In this case, such recti-
fication with new knowledge is ineffective and even harm-
ful due to the new model subject to accumulating erroneous
knowledge.

Rectification with Paired Knowledge
When encountering both erroneous old and new knowledge,
the model will significantly deviate from the learned knowl-
edge and finally lead to performance degradation. To tackle
the above issue, we use the known paired GT label to realize
the rectification.

Derived from Eq. 6, we replace the incorrect affinity in
the old knowledge with the paired label which is correct for
both old and new datasets as follows:

M(T )
i,i = 1, i 6= argmax(M(s,s−1)

i,1 , ...,M(s,s−1)
i,N ). (9)

Then, we constrain the learning of the current stage based
on the correlation between the off-diagonal affinity and the
label information in the old feature space, which can be for-
mulated as follows:

M(T )
i,j =


1

1 +
∑N
k 6=iM

(s−1)
i,k

, i = j

M(s−1)
i,j

1 +
∑N
k 6=iM

(s−1)
i,k

, i 6= j.

(10)

Finally, the complete DKR is shown in Alg. 1. We com-
bine the above strategies to obtain the rectified old knowl-
edge matrixMT and develop Eq. 5 to achieve the balance
between the anti-forgetting of the old dataset and the adap-
tation to the new dataset. Particularly, Ljs consists of both
text-to-image distillation and image-to-text distillation. We
sum up the above two distillation losses to achieve the bal-
ance in the vision-language retrieval task.

Objective Function
Finally, the total objective function of our proposed DKR is
calculated as follows:

L = Lclip + λLJS(T, s), (11)
where λ is a hyperparameter for training.

Experiments
In this section, we conduct extensive experiments to validate
the effectiveness of our proposed DKR.

Datasets and Evaluations
We conduct the validation experiments on five real-world
benchmark image-text retrieval datasets: 1) MS-COCO
Caption: MS-COCO Caption (MS-COCO) (Lin et al. 2014)
is a widely used image caption dataset. It contains 80K
training images and 5K testing images, where each image

Algorithm 1: Dynamic Knowledge Rectification (DKR)

Input: Old affinity matrix M(s−1), New affinity matrix
M(s).
Parameter: Batch size N .
Output: Rectified affinity matrixMs−1.

1: for i = 1 to N do
2: if i = argmax(M(s−1)

i,1 , ...,M(s−1)
i,N ) then

3: MT
i =M(s−1)

i ;
4: else if i = argmax(M(s)

i,1 , ...,M
(s)
i,N ) then

5: MT
i,j =M(s−1)

i,j ×
1−M(s)

i,i

1−M(s−1)
i,i

, i 6= j;

6: MT
i,i = 1;

7: else
8: Ms−1

i,i = 1;

9: MT
i =

Ms−1
i

1 +
∑N
k 6=iM

(s−1)
i,k

10: end if
11: end for
12: returnMT

has five captions. 2) Flickr30K: Flickr30K (Young et al.
2014) contains 31,783 images from the Flickr website, and
each image is annotated by 5 sentences. We use 30K im-
ages as the training set and the rest 1K images as the testing
set. 3) IAPR TC-12: IAPR TC-12 (Grubinger et al. 2006)
consists of 20,000 images with corresponding captions col-
lected around the world. We use 15K images for training
and the rest 5K images for testing. 4) ECommerce-T2I:
ECommerce-T2I (EC) (Yang et al. 2021) is a large-scale e-
commerce products retrieval dataset. It contains 90K images
for training and 5K images for testing, where each image is
annotated with one sentence. 5) RSICD: RSICD (Lu et al.
2017) is a remote sensing image retrieval dataset, which con-
tains 10,921 images of 30 scenes. We use 9,828 images for
training and the rest 1,093 images for testing.

Considering that the CVLR data may come from a spe-
cific dataset or different datasets, we verify the effective-
ness of our DKR under two settings. Setting-1: To eval-
uate the effectiveness of our proposed DKR on different
datasets, we conducted experiments on five sequential given
datasets (i.e., MS-COCO → Flickr30K → IAPR TC-12 →
EC → RSICD). Setting-2: To further evaluate the perfor-
mance on the specific dataset, we follow the benchmark
in (Ni et al. 2023), which randomly and uniformly divides
the EC dataset into 5 sub-datasets, and sequentially train on
these 5 sub-datasets. The test dataset includes Flickr30K,
MS-COCO, and EC.

We employ the widely used evaluation metrics in cross-
modal retrieval, Recall at Top K (R@K), to evaluate and
compare our method with the existing methods under the
same setting for fair comparisons.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11708



Method MS-COCO Flickr30K IAPR TC-12 EC RSICD Average
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Joint 53.7 78.4 86.4 80.9 95.6 98.1 53.6 82.6 90.5 18.6 43.7 57.0 12.0 31.3 45.6 43.7 66.3 75.5
Zero-Shot 39.8 64.4 74.5 68.3 89.0 94.2 36.0 65.8 76.6 11.0 27.7 37.9 5.2 15.7 26.3 32.1 52.5 61.9
SFT 39.0 65.5 75.3 69.7 90.1 94.3 47.0 77.4 87.0 14.9 37.1 50.1 12.8 33.5 47.9 36.7 60.7 70.9
EWC 39.9 66.6 76.5 70.0 90.6 94.5 47.3 77.3 87.0 15.0 37.2 50.3 13.3 32.5 47.5 37.1 60.8 71.1
LwF 47.0 72.9 82.1 76.2 93.6 97.1 54.6 83.6 91.2 17.0 40.2 53.8 14.0 35.0 49.7 41.7 65.0 74.8
ERL 48.3 73.5 82.6 77.3 93.6 96.7 51.0 80.5 88.8 18.2 42.1 55.5 14.1 33.8 48.2 41.8 64.7 74.3
AFC 48.3 73.7 82.6 77.7 93.6 96.7 51.2 80.7 89.0 18.3 42.2 55.4 14.5 33.3 47.7 42.0 64.7 74.3
Mod-X 49.7 73.8 82.6 77.8 93.7 97.1 51.1 80.7 89.0 18.2 42.3 55.5 14.5 33.5 47.8 41.9 64.8 74.3
Ours 51.4 76.0 84.4 79.3 94.6 97.4 53.9 83.1 90.8 18.0 42.0 54.8 14.1 34.3 49.2 43.3 66.0 75.3

Table 1: Comparison with state-of-the-art methods on different datasets (Training order: MS-COCO→Flickr30K→IAPR TC-
12→EC→RSICD. The best results are bolded and the second-best results are underlined.)

Method
Image-Text Retrieval Text-Image Retrieval AverageFlickr30K MS-COCO EC Flickr30K MS-COCO EC

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
Joint 64.5 88.6 39.8 64.8 23.5 50.8 46.9 73.1 22.2 44.5 23.5 50.6 36.7 62.1
Zero-Shot 77.7 94.5 50.1 74.6 11.3 27.6 58.9 83.5 30.2 55.6 10.1 25.5 39.7 60.2
SFT 63.4 87.2 36.8 61.5 16.6 40.7 44.4 71.0 20.6 42.6 15.8 40.5 32.9 57.3
EWC 64.0 87.8 37.7 64.3 16.2 40.0 44.8 72.4 20.7 44.1 16.5 42.0 33.3 58.4
Mod-X 73.1 92.1 47.1 70.5 20.1 44.8 55.6 79.9 27.9 51.0 20.0 44.8 40.6 63.9
Ours 78.5 95.7 51.7 75.4 20.4 46.2 58.7 83.6 29.7 54.2 20.2 45.3 43.2 66.7

Table 2: Comparison with state-of-the-art methods on the specific dataset. (Training order: EC-1→EC-2→EC-3→EC-4→EC-5.
The best results are bolded and the second-best results are underlined.)

Implementation Details
The proposed DKR is implemented in PyTorch with
NVIDIA V100 GPUs. We use CLIP(ViT-Based/32) (Rad-
ford et al. 2021) with the pre-trained weight on the large-
scale open-world datasets in (OpenAI. 2021) as our back-
bone. Input images are resized to 224 × 224. Each task is
trained with 35 epochs with a batch size of 280. We use
Adam optimizer with (β1,β2)=(0.9, 0.99) and weight decay
of 0.2 to update the whole CLIP. The initial learning rate is
set to 1e-6 with 20% warm-up iterations, and a cosine-decay
learning rate scheduler is also used to update the whole
framework. The hyperparameter λ is set to 1.0 and 0.1 for
Setting-1 and Setting-2, respectively.

Comparison with State-of-the-art Methods
In this section, we compare our DKR to five continual
learning methods that do not rely on class label informa-
tion: EWC (Elastic Weight Consolidation) (Kirkpatrick et al.
2017), LwF (Learning Without Forgetting) (Li and Hoiem
2017), AFC (Adaptive Feature Consolidation) (Kang, Park,
and Han 2022), ERL (Exemplars Relation Loss) (Dong et al.
2021) and Mod-X (Maintain Off-diagonal information ma-
triX) (Ni et al. 2023). In addition, we report three basic
training strategies: Joint, Zero-Shot, and SFT. Joint repre-
sents that all data are available at any time, which is an up-
per bound. Zero-shot represents directly testing the original
pre-trained CLIP. SFT represents sequentially training and
testing the model without any anti-forgetting strategies.

Comparison on Different Datasets Tab. 1 summarizes
the results of our DKR on five different datasets. Compared

with existing methods, DKR ranks first on all average met-
rics of I2T and T2I and achieves 43.4%, 66.0%, and 75.3%
on R@1, R@5 and R@10, respectively. In particular, on
the MS-COCO dataset, DKR outperforms Mod-X by 1.7%,
2.2%, and 1.8% on R@1, R@5 and R@10, which illus-
trates that our DKR can effectively alleviate the catastrophic
forgetting problem. Note that existing methods traded ex-
pensive performance degradation in old datasets (e.g., MS-
COCO and Flickr30K) for limited improvements in new
datasets (e.g., EC and RSICD). Fig. 4 illustrates the R@1
accuracy on MS-COCO after each training step. It can be
seen that our DKR achieves the best anti-forgetting per-
formance, which significantly outperforms existing meth-
ods. The above results illustrate the superiority of our DKR
against state-of-the-art methods.

Comparison on the EC Dataset As shown in Tab. 2,
our DKR achieves the best retrieval performance on the
EC dataset. Specifically, DKR achieves the highest retrieval
performance on the EC dataset, i.e. achieves 20.4% and
20.2% on R@1 in Image-Text Retrieval (I2T) and Text-
Image Retrieval tasks (I2T). Meanwhile, our DKR signifi-
cantly suppresses Mod-X in the old datasets (Flickr30K and
MS-COCO) on all criteria. The above results illustrate that
DKR can effectively preserve the old knowledge for anti-
forgetting. Note that although DKR is not directly trained
on Flickr30K and MS-COCO, it can even achieve higher
results than CLIP (Zero-Shot) on the Image-Text Retrieval
task. This is because our DKR method can achieve positive
transfer for both old and new knowledge by properly filter-
ing and rectifying the incorrect knowledge.
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Base RNK RPK RNK* MS-COCO Flickr30k IAPR TC-12 EC RSICD Average
X 49.0 77.9 51.9 15.8 11.1 41.2
X X 50.7 78.7 53.4 17.3 12.7 42.6
X X 49.4 78.1 52.8 16.7 12.7 41.9
X X X 51.1 79.0 53.8 17.2 12.2 42.9
X X X 51.4 79.3 53.9 18.0 14.1 43.3

Table 3: Ablation studies of each component of DKR under Setting-1, where average R@1 accuracy is reported. (The best
results are bolded and the second-best results are underlined.)
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Figure 4: The retrieval performance of different methods in
each training stage under Setting-1 on MS-COCO, where
Text-Image and Image-Text retrieval results are shown in (a)
and (b), respectively.

0.1 0.3 0.5 0.7 0.9 1 2 4 6 8 10
Value…of…

42.1

42.4

42.7

43.0

43.3

R
@
1(
%
)

42.15

42.44

42.81

43.01

43.25
43.3443.32

43.18
43.09

42.96

42.84

(a)

0.1 0.3 0.5 0.7 0.9 1 2 4 6 8 10
Value…of…

64.0

64.5

65

65.5

66

R
@
5(
%
)

64.89

65.19

65.56

65.82
65.9665.98

65.68

64.96

64.56
64.39

64.15

(b)

Figure 5: The effects of hyperparameter λ under Setting-1,
where averaged R@1 and R@5 accuracy (%) are shown in
(a) and (b), respectively.

Ablation Study
In this section, we conduct ablation studies under Setting-1
to evaluate the effectiveness of each component of DKR and
the effect of the hyperparameter.

hyperparameter Study We first evaluate the effect of the
hyperparameter λ in Eq. 11 under Setting-1. The average
R@1 and R@5 accuracy on all five sub-datasets are shown
in Fig. 5. With λ increasing, the average R@1 and R@5
keep improving before λ arrives at 1.0. This is because a
slight λ (< 1) cannot alleviate the catastrophic forgetting of
old knowledge, while an excessive λ (> 1) will limit the
acquisition of new knowledge. It can be seen that our DKR
strikes a balance of the above two states when λ=1 in a gen-
eral scene.

Effectiveness of Rectification with New Knowledge To
evaluate the effectiveness of our Rectification with New
Knowledge (RNK), we introduce two variants to carefully
evaluate the impact of the new knowledge, i.e. RNK (full
version) and RNK* (RNK w/o Eq. 8). As shown in Tab.
3, compared to the Base, RNK significantly improves the
average performance by 1.4%. When combined with RPK,
our final model achieves a significant improvement of 2.1%.
This shows that by rectifying the incorrect old knowledge
with new knowledge, DKR significantly improves the anti-
forgetting of old knowledge. In addition, compared to the
other variant (RNK*), RNK gains an improvement on new
datasets (+0.8% on EC and +1.9% on RSICD). These results
indicate that the enhancement to new knowledge (w.r.t. Eq.
8) improves the performance on new datasets while main-
taining the anti-forgetting of old knowledge.

Effectiveness of Rectification with Paired Knowledge
We compare the proposed Rectification with Paired Knowl-
edge (RPK) to the basic knowledge distillation strategy
without any rectification (Base). As shown in Tab. 3, com-
pared with the Base, RPK brings an improvement by 0.7%
on average R@1 accuracy on all datasets. When combined
with RNK, the performance on each dataset is further im-
proved by 0.7% on average R@1 accuracy. It indicates that
by rectifying with additional knowledge, RPK promotes the
acquisition of both old and new knowledge and thus improv-
ing the overall performance, verifying its high effectiveness.

The above results verify that our DKR is essential for
striking the balance between the anti-forgetting of old
knowledge and the acquisition of new knowledge.

Conclusion
In this paper, we proposed a novel framework for the Con-
tinual Vision-Language Retrieval (CVLR) task, called Dy-
namic Knowledge Rectification (DKR), which alleviates
the catastrophic forgetting problem by dynamically filter-
ing and rectifying incorrect old knowledge. Specifically, we
designed a knowledge rectification method to achieve the
anti-forgetting of the old knowledge and the acquisition of
both old and new knowledge. Extensive experiments on five
vision-language retrieval benchmark datasets demonstrate
that our DKR achieves state-of-the-art performance.
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