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Abstract

As an up-and-coming area, CLIP-based pre-trained vision-
language models can readily facilitate downstream tasks
through the zero-shot or few-shot fine-tuning manners. How-
ever, they still face critical challenges in test-time general-
ization due to the shifts between the training and test data
distributions, hindering the further improvement of the per-
formance. To address this crucial problem, the latest works
have introduced Test-Time Adaptation (TTA) techniques to
CLIP which dynamically learn text prompts using only test
samples. However, their limited learning capacity due to the
overlook of visual modality information, and the underuti-
lization of knowledge in previously seen test samples result in
reduced performance. In this paper, we propose a novel Dual-
modal Adaptive online prompting and knowledge ReTention
method called DART to overcome these challenges. To in-
crease the learning capacity, DART captures knowledge from
each test sample by learning class-specific text prompts and
instance-level image prompts. Additionally, to fully leverage
the knowledge from previously seen test samples, DART uti-
lizes dual-modal knowledge retention prompts to adaptively
retain the acquired knowledge, thereby enhancing the predic-
tions on subsequent test samples. Extensive experiments on
various large-scale benchmarks demonstrate the effectiveness
of our proposed DART against state-of-the-art methods.

Introduction
Recently, the emergence of CLIP-based pre-trained vision-
language models (Radford et al. 2021; Zhou et al. 2022b,a)
has significantly propelled the advancement in computer
vision. Through the exploration of appropriately designed
text prompts, the pre-trained CLIP can be adapted to var-
ious downstream tasks for test-time inference (Luo et al.
2022; Wang et al. 2022a,c; Gal et al. 2022). However, man-
ual crafting of task-specific prompts requires linguistic ex-
pertise and is time-consuming. A naive solution, that fine-
tuning the entire pre-trained CLIP model on downstream
tasks, will inevitably incur a large computational overhead
and hinder the generalization ability of CLIP. An alterna-
tive approach involves adjusting the text prompts through
few-shot fine-tuning, allowing the model to adapt to down-
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Figure 1: The latest CLIP-based test-time adaptation method
TPT (Shu et al. 2022) learns an independent instance-
level text prompt for each sample. In contrast, our pro-
posed DART utilizes dual-modal instance-level prompts and
knowledge retention prompts to comprehensively capture
sample-specific knowledge and retain the acquired knowl-
edge, enhancing the model’s adaptability.

stream tasks (Zhou et al. 2022b,a; Khattak et al. 2023). How-
ever, due to the distribution shifts between the training and
test data, such methods may encounter severe performance
limitations. To address this issue, the latest approaches (Shu
et al. 2022; Niu et al. 2023) focus on enhancing the perfor-
mance of pre-trained models during the test phase by adapt-
ing them to fit the distribution of test data, which is known
as Test-Time Adaptation (TTA).

Facing the practical challenge of the small batch size
of test-time inference, or even one individual sample per
batch, various TTA methods have been proposed (Wang
et al. 2021; Shu et al. 2022; Niu et al. 2022; Döbler, Mars-
den, and Yang 2023; Niu et al. 2023). These methods pri-
marily adopt three strategies, batch normalization calibra-
tion (Schneider et al. 2020; Wang et al. 2021; Niu et al.
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2023), consistency regularization (Yuan, Xie, and Li 2023;
Döbler, Marsden, and Yang 2023), and anti-forgetting regu-
larization (Niu et al. 2022; Shu et al. 2022; Song et al. 2023)
to align the pre-trained model with the distribution of test
data. However, the above methods neither fully leverage the
dual-modality knowledge contained in the pre-trained CLIP
nor effectively utilize the knowledge of previously seen test
samples. Specifically, the recent work (Shu et al. 2022) pre-
serves the knowledge of training data by freezing the back-
bone and adapts the model during test time through learning
an instance-level unified text prompt for all classes. How-
ever, the learning of instance-level text prompts for each test
sample is independent and the historical knowledge from
the test samples that have already been encountered can not
be utilized. Moreover, the overlook of the image modality
counterpart severely limits the cross-modality capability of
CLIP.

With the breakthrough of prompt learning technology in
the field of natural language processing (Tsimpoukelli et al.
2021; Li and Liang 2021), various methods migrate prompt
learning to the field of computer vision (Jia et al. 2022; Gao
et al. 2022; Wang et al. 2022e), which adapt the pre-trained
model to downstream tasks by learning few additional pa-
rameters. Therefore, in this paper, we propose a novel CLIP-
based Dual-modal Adaptive online prompting method for
knowledge ReTention in TTA, called DART. As demon-
strated in Figure 1, DART involves both text and visual
prompts to effectively capture the individual knowledge of
each test sample, with the goal to enhance the model’s pre-
diction accuracy. Furthermore, to fully leverage the knowl-
edge contained in historical test samples, dual-modal knowl-
edge retention prompts are designed to adaptively retain the
historical knowledge, and facilitate predictions on subse-
quent test samples. As a result, our proposed DART can ef-
fectively and adaptively tackle unseen test instances to im-
prove the overall performance via TTA. In summary, the
contributions of this paper are three-fold:

• To enhance the test-time generalization ability of CLIP
and mitigate the severe training-test distribution shift-
ing challenge, the proposed DART utilizes dual-modal
online prompts to thoroughly capture information from
each individual test sample, thereby improving its pre-
diction accuracy.

• To fully leverage the knowledge from historical test sam-
ples, DART proposes dual-modal knowledge retention
prompts to adaptively retain the knowledge from the his-
torical test samples and benefit the predictions of subse-
quent test samples.

• Extensive experiments on various large-scale bench-
marks demonstrate the superiority of our proposed
DART against the state-of-the-art TTA methods.

Related Work
Pre-trained Vision-Language Models
The recent pre-trained vision-language models including
CLIP (Radford et al. 2021) and ALIGN (Jia et al. 2021),
have presented a surprising ability to learn general visual

representations for downstream tasks in a zero-shot man-
ner through proper prompts. Specifically, CLIP aimed to
use “a photo of a CLS” as a prompt on the language side
for zero-shot image classification. However, its classification
performance heavily depends on the elaborately designed
text prompts, which requires time-consuming prompt en-
gineering by experts. Therefore, few-shot approaches like
CoOp (Zhou et al. 2022b) and CoCoOp (Zhou et al. 2022a)
are proposed to regard the text prompt as learnable parame-
ters and employ a small amount of downstream task data for
prompt training. Additionally, MaPLe (Khattak et al. 2023)
proposes to train cross-modal prompts for the adaptation of
CLIP. However, all the above methods have to rely on the
collection of training data from downstream tasks. Due to
the variations between training and test data, they could not
generalize well on unseen test data from shifted data distri-
butions which severely limits their practical effectiveness.

Test-Time Adaptation
In realistic scenarios, the test data always undergo natural
variations or corruptions, resulting in data distribution shift-
ing between the training and test phases (Hendrycks and Di-
etterich 2019; Koh et al. 2021). Therefore, even the large-
scale pre-trained models are also difficult to generalize well
on test data when domain shifting occurs (Recht et al. 2018).
Recently, various Test-Time Adaptation (TTA) approaches
are proposed to adaptively adjust the pre-trained models in
the test phase to fit the distribution of test data (Schneider
et al. 2020; Sun et al. 2020; Wang et al. 2021).

In terms of model parameter optimization, several meth-
ods (Schneider et al. 2020; Wang et al. 2021; Shu et al. 2022;
Niu et al. 2023) propose to capture domain variations in test
data by optimizing the batch normalization layers but are
severely limited by the model architecture. Besides, various
approaches (Yuan, Xie, and Li 2023; Döbler, Marsden, and
Yang 2023) utilize consistency regularization to ensure sta-
ble model predictions when the data are perturbed slightly,
and the model is optimized by using unlabeled test samples.
Typically, these methods employ a teacher-student network
architecture, where different augmented samples are fed into
the two models whose outputs are constrained to be as close
as possible. However, these methods usually update the en-
tire model and can not retain the knowledge of training data
well to assist in the prediction of the current data. Based on
this, recent works (Wang et al. 2022b; Niu et al. 2022; Shu
et al. 2022) propose using anti-forgetting techniques to pre-
serve the knowledge of the training data during TTA, aiding
the predictions of test samples. However, they do not effec-
tively explore the historical knowledge from the seen test
data, still resulting in limited performance on unseen test
samples.

Prompt Learning
Prompts are initially applied in the field of natural language
processing (NLP) (Ponti et al. 2020; Brown et al. 2020) by
manually designing text prompts to make adaptive adjust-
ments to downstream tasks. Although manually designed
prompt templates are intuitive and promising, they require
tremendous human effort and specific expertise which are
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Figure 2: The overall pipeline of our proposed Dual-modal Adaptive online prompting and knowledge ReTention (DART)
method. For each test sample, DART utilizes dual-modal instance-level prompts to capture its specific information. Additionally,
dual-modal knowledge retention prompts are designed to adaptively retain informative knowledge of seen test samples to benefit
the prediction of subsequent test instances.

costly. To address this issue, numerous NLP methods (Li
and Liang 2021; Tsimpoukelli et al. 2021) no longer focus
on designing human-interpretable natural language prompt
templates but treat prompts as learnable parameters, which
greatly increase the flexibility and diversity of prompts.

Recently, there are various methods (Jia et al. 2022; Gao
et al. 2022; Chen et al. 2022) migrating prompt learning to
the field of computer vision. The main idea is concentrated
on adopting the pre-trained vision transformer (Dosovitskiy
et al. 2020) to downstream tasks by training a small number
of prompt parameters. After the emergence of VPT (Jia et al.
2022) which initially migrates prompt learning to the field
of image recognition, prompting in vision has been rapidly
spread to various tasks such as image recognition (Chen
et al. 2022), incremental learning (Wang et al. 2022e,d;
Wang, Huang, and Hong 2022). However, the aforemen-
tioned methods need to utilize sufficient training data to train
prompts before they can be applied to downstream tasks,
thus they can hardly adjust prompts for online test data dur-
ing test-time inference.

Therefore, few works have been proposed recently to fo-
cus on the important and promising direction of test-time
online prompting. DePT (Gao et al. 2022) proposes a hier-
archical self-training model to dynamically train the learn-
able prompts and classifier of the visual model at test time to
cope with variations of test data. Moreover, TPT (Shu et al.
2022) is designed as a TTA method for the pre-trained CLIP
model, which tunes the instance-level text prompt by min-
imizing the entropy loss. However, for a vision-language
model like CLIP, TPT only concentrates on the prompt on
the text side but lacks the utilization of the important image

side, which greatly limits the multi-modality ability of the
CLIP model to tackle the test data.

The Proposed Method
Problem Setting and Notations
In this work, we focus on the test-time adaptation (TTA) sce-
nario, where the distribution of data in the test phase dif-
fers from the training phase. The training data are denoted
as Xs, and the test data during the online test-time are do-
nated asX = {xi}ni=1 which exhibits a different distribution
against Xs. For each xi, we first learn dual-modal instance-
level prompts P =

{
PT ,PI

}
for it, then apply P into the

pre-trained vision-language model θ to obtain the predicted
category yi = θ(xi,P), yi ∈ Y of input sample xi.

Test-Time Adaptation for CLIP
A pre-trained CLIP model θ = {ET,EI} consists of two
encoders, one for the text modality ET and the other one
for the image modality EI. These two encoders separately
encode text and image inputs into the text-image cross-
modality representation space. Generally, the architecture of
the text encoder ET is a Transformer model (Vaswani et al.
2017), as well as the image encoder is a CNN (He et al.
2016) or a ViT (Dosovitskiy et al. 2020). The CLIP model is
trained by a contrastive loss with the goal of maximizing the
cosine similarity of the matched text-image pairs and mini-
mizing the cosine similarity of the unmatched pairs.

For a test image x ∈ RC×H×W , the representation of
image x can be obtained as rI = EI(x). For the labels, a
hand-crafted prompt P = “a photo of a” combined with all
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class names in Y , i.e. {[P; c1], [P; c2], · · · , [P; cN ]} are fed
into the text encoder ET to obtain the label representations{
rT1 , r

T
2 , · · · , rTN

}
, where rTi = ET(P, ci). Then the pre-

diction probability P (y = j|x) can be obtained as:

P (y = j|x) = exp(sj/τ)∑N
i=1 exp(si/τ)

, (1)

where si := cos(rI , rTi ) and τ is the temperature of the
softmax function. Although classification prediction can be
obtained via Eq. 1, its performance can be severely limited
when test data suffers from significant data distribution shift-
ing against training samples. Therefore, we propose a dual-
modal adaptive online prompting and knowledge retention
(DART) method for test-time adaptation to improve the on-
line generalization ability of CLIP.

Dual-Modal Online Prompting in DART
As mentioned above, the text input for the inference of CLIP
is {[P; c1], [P; c2], · · · , [P; cN ]}, which means all classes
share a same prompt. The latest work e.g. TPT (Shu et al.
2022) followed this setting and their performance is limited
by using a single prompt for different classes.

In order to mitigate the discrepancy between different
classes during online test time, we propose to adopt a class-
specific text prompt pTi for each class ci. Then we initialize
a group of class-specific text prompts as below:

PT =
{
PT1 ,P

T
2 , · · · ,P

T
N

}
. (2)

With PT , the text representation of a class ci can be com-
puted as follows:

rTi = ET(P
T
i , ci). (3)

The instance-level class-specific text prompts PT helps the
text encoder ET to explore the semantic information in the
text side related with the current image x.

Unlike the existing CLIP-based few-shot or test-time
prompt learning methods (Zhou et al. 2022b,a; Shu et al.
2022) only adjusting the text prompts, our DART elaborately
integrates visual prompts pI into the image encoder EI via
an instance-level adjustment for different test samples as be-
low:

rI = EI(x,P
I), (4)

The instance-level visual prompt PI assists the image en-
coder EI in utilizing the intrinsic semantic information.

Adaptive Knowledge Retention in DART
Through dual-modal online prompting, DART comprehen-
sively captures knowledge from individual test samples. To
retain and harness the knowledge unearthed from individual
samples, aiding the test of subsequent samples, we first de-
sign dual-modal knowledge retention prompts for each cat-
egory to retain knowledge as below:

P̃
T
=
{
P̃
T

1 , P̃
T

2 , · · · , P̃
T

N

}
, (5)

P̃
I
=
{
P̃
I

1, P̃
I

2, · · · , P̃
I

N

}
. (6)

According to Eq. 1, by using the dual-modal prompts PT ,
PI of t-th test sample xt, we can obtain its predicted class
j = ŷt ∈ Y and similarity with corresponding text prompt
sj = cos(rI , rTj ). An intuitive idea is that when the similar-
ity sj and prediction confidence P (y = j|xt) are higher, the
dual-modal prompts PT , PI contains more useful knowl-
edge. So a fusing weight βt is calculated as bellow:

βt = 1− e−sj/h, (7)
where h is a temperature hyper-parameter. To adaptively re-
tain knowledge from seen test samples, then we merge PT ,
PI with the corresponding class-specific knowledge reten-
tion prompts P̃

T

j , P̃
I

j using the calculated weight βt to pre-
serve the learned knowledge:

P̃
T

j ← P̃
T

j · (1− βt) +PTj · βt, (8)

P̃
I

j ← P̃
I

j · (1− βt) +PI · βt, (9)
where← denotes updating the value of a variable.

When the next test sample xt+1 is coming, for the text
modality, P̃

T
is used for initialization to leverage the knowl-

edge from past test samples:

PT ← PT · (1− wT ) + P̃
T
· wT , (10)

where wT is a hyper-parameter. For the imaging modality,
since only one prompt is used and the category of the image
cannot be known in advance, the information from previous
samples can only be utilized in the test-time inference phase.
Assuming that in the test-time training phase, the class j will
get the highest confidence, then the past sample’s knowledge
is utilized as follows:

PI ← PI · (1− wI) + P̃
I

j · wI , (11)
where wI is a hyper-parameter. In summary, our DART
can adaptively retain the knowledge learned from high-
confidence samples through dual-modal knowledge prompts
and utilize them to assist in predicting subsequent unseen
samples.

The Optimization of DART
As shown in Figure 2, the introduced prompts in DART can
be readily optimized in an online learning manner where the
pre-trained CLIP is frozen. Follow the protocol of TPT (Shu
et al. 2022), for each test image x, we first augment it to
{xa1 , xa2 , · · · , xaB} where B is the batch size in training.
Then, all the B augmented images are fed into the CLIP
model to get the prediction probability distribution of xai :
{PP(y = j|xa1), PP(y = j|xa2), · · · , PP(y = j|xaB)} ,

(12)
where P =

{
PT ,PI

}
is the designed dual-modal instance-

level prompts of image x. To reduce the noise interference
caused by some unsuitable augmentations, we eliminate the
predictions with low self-confidence. The self-confidence of
one augmented view xai is computed as below:

H(xai ) =
N∑
j=1

PP(y = j|xai ) logPP(y = j|xai ). (13)
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Then we select the top ρ ratio samples of high self-
confidence, where ρ is a pre-defined hyper-parameter. Fi-
nally, we optimize the prompts P by minimizing the entropy
of average prediction distribution over the selected confident
samples, i.e.

argmin
P

−
N∑
j=1

PP(y = j|x) logPP(y = j|x), (14)

where

PP(y = j|x) = 1

ρB

ρB∑
i=1

PP(y = j|xai ). (15)

Experiments
We first introduce the benchmarks used for evaluating our
DART and the compared state-of-the-art methods, then the
implementation details are demonstrated accordingly. Fi-
nally, extensive experiment results and analyses are further
presented along with discussions about the ablation study of
our proposed method. Moreover, more experimental results
and analyses are included in our Supplementary.

Methods Publication I-A I-R I-S Average
CLIP ICML 2021 47.87 73.98 46.09 55.98
Ensemble ICML 2021 49.89 77.65 48.24 58.59
CoOp IJCV 2022 49.71 75.21 47.99 57.64
CoCoOp CVPR 2022 50.63 76.18 48.75 58.52
MaPLe CVPR 2023 50.90 76.98 49.15 59.01
DART This Paper 60.56 79.56 49.76 63.29

Table 1: The Acc@1 comparison results against CLIP and
the latest few-shot fine-tuning methods on three bench-
mark datasets. The I-A, I-R, and I-S represent ImageNet-A,
ImageNet-R, and ImageNet-Sketch respectively.

Datasets
Since the data distribution shifting will inevitably occur
in real-world scenarios, the experiments are conducted
on three large-scale benchmarks, ImageNet-A (Hendrycks
et al. 2021b), ImageNet-R (Hendrycks et al. 2021a), and
ImageNet-Sketch (Wang et al. 2019) which are variants of
the ImageNet (Deng et al. 2009) dataset to evaluate the per-
formance of different methods for improving the test-time
generalization ability of CLIP. These benchmarks have been
considered as out-of-distribution data for ImageNet previ-
ously (Radford et al. 2021), and we follow the same setting
in our experiments.

• ImageNet-A (Hendrycks et al. 2021b) is a natural adver-
sarial image dataset that contains natural images misclas-
sified by ResNet-50 (He et al. 2016) in ImageNet (Deng
et al. 2009). In total, it contains 7,500 images of 200 cat-
egories. These misclassified images in ImageNet-A usu-
ally suffer from various distribution shifting which poses
critical challenges to the test-time generalization ability
of models.

• ImageNet-R (Hendrycks et al. 2021a) is a multi-domain
(e.g. art, cartoon, painting) image dataset consisting of
30,000 images and 200 categories of ImageNet. All the
images in ImageNet-R are collected from 15 different
style domains, thus there exist drastic domain gaps be-
tween different images.

• ImageNet-Sketch (Wang et al. 2019) is a sketch image
dataset consisting of 50000 images, 50 images for each
of the 1000 ImageNet classes. The images in ImageNet-
Sketch are all black and white, and their distribution dif-
fers significantly from the training data of CLIP.

Comparison Methods
In the experiments, we compared our proposed DART
with state-of-the-art TTA and few-shot fine-tuning meth-
ods designed for CLIP. In detail, TPT (Shu et al. 2022)
is a test-time prompt-tuning approach focusing on fine-
tuning a learnable text prompt for CLIP. Tent (Wang et al.
2021), EATA (Niu et al. 2022), SAR (Niu et al. 2023) and
RMT (Döbler, Marsden, and Yang 2023) are general TTA
methods. CoOp (Zhou et al. 2022b) and CoCoOp (Zhou
et al. 2022a) are few-shot prompt-tuning methods aim-
ing at fine-tuning the text prompts. MaPLe (Khattak et al.
2023) is a few-shot method training cross-modal prompts
on each dataset. Following the same protocol in (Zhou et al.
2022b,a), 16-shot extra training images of each category are
provided for fine-tuning. For test-time inference, once the
text prompts are learned, the aforementioned methods are di-
rectly used in the same way as CLIP does. In addition, since
the pre-trained CLIP can be directly applied to downstream
classification tasks in a zero-shot manner, we also regard it
as a baseline method. Two different text prompt settings of
CLIP are evaluated, one is the default “a photo of a” and the
other one is the ensemble of 80-hand-crafted prompts from
(Radford et al. 2021).

Implementation Details
The pre-trained CLIP model with ViT-B/16 is used as our
backbone (Radford et al. 2021). For each test image, we
initialize all the text prompts in our DART as “a photo of
a”. The image prompts are initialized with a uniform dis-
tribution of (−1, 1) following the previous visual prompting
methods (Wang et al. 2022e,d). The length of image prompts
is set to 2, and they are added to the second layer of the
CLIP image encoder. The hyper-parameters h, wT , and wI
of dual-modal knowledge retention prompts are set to 5000,
0.1, and 0.1 respectively. For the learning of DART, we use
randomly resized crops to augment the single test sample to
obtain a batch ofB = 64 images, and the confidence thresh-
old ρ follows the same setting in (Shu et al. 2022). An Adam
optimizer with a learning rate of 0.003 is used to optimize
the prompts P . All experiments are implemented on a single
NVIDIA 4090 GPU.

Comparison with State-of-the-arts
The overall comparison results against the state-of-the-art
TTA and few-shot fine-tuning methods on ImageNet-A,
ImageNet-R, and ImageNet-Sketch are reported in Table 1
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Methods Publication ImageNet-A ImageNet-R ImageNet-Sketch Average
Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

V
iT

Tent ICLR 2021 38.91 69.40 61.95 76.01 48.26 72.17 49.71 72.53
EATA ICML 2022 38.05 67.48 59.08 73.35 44.18 67.62 47.10 69.48
SAR ICLR 2023 37.71 69.72 61.13 75.83 49.82 73.71 49.55 73.09
RMT CVPR 2023 30.71 65.83 59.91 74.02 46.41 70.75 45.68 70.20

C
L

IP

Tent ICLR 2021 48.44 78.91 74.61 91.87 46.82 74.13 56.62 81.64
TPT NIPS 2022 54.77 81.52 77.06 92.08 47.94 74.78 59.92 82.79
EATA ICML 2022 49.91 79.23 74.54 91.48 46.93 73.89 57.13 81.53
SAR ICLR 2023 48.89 78.92 75.81 91.85 47.59 74.14 57.43 81.64
RMT CVPR 2023 48.28 78.61 74.47 91.30 47.34 74.20 56.70 81.37
DART This Paper 60.56 82.59 79.56 93.27 49.76 75.73 63.29 83.86

Table 2: The comparison results against state-of-the-art TTA methods on three benchmark datasets. ViT represents the ViT-B/16
model pre-trained on ImageNet, and CLIP represents the pre-trained CLIP model with ViT-B/16 architecture.

Components in DART ImageNet-A

PT P̃
T

PI P̃
I

Acc@1 Acc@5
7 7 7 7 47.87 79.09
3 7 7 7 57.12 81.59
7 7 3 7 54.24 80.63
3 3 7 7 58.04 81.45
7 7 3 3 55.26 80.51
3 3 3 3 60.56 82.59

Table 3: Ablation study about the different components of
DART. PT and PI represent the class-specific text prompts
and image prompts respectively. P̃

T
and P̃

I
represent

knowledge retention text prompts and knowledge retention
image prompts respectively. 3 and 7 represent without or
with this component. When none of the components is used,
the model degenerates to the baseline CLIP.

and Table 2 respectively. Compared to few-shot fine-tuning
methods, DART outperforms the second-best player MaPLe
by 4.28% at average Acc@1 over all three datasets. Even
though these few-shot methods utilize extra labeled data
from ImageNet for fine-tuning, they still struggle to address
the issue of test data distribution shifting. In contrast, our
DART employs dual-modal online prompting to dynami-
cally adapt the pre-trained CLIP model to handle various
test data from different distributions.

As for the TTA methods including Tent, EATA, SAR, and
RMT, they originally employed the pre-trained ViT on Ima-
geNet as the backbone. Considering the distinct training data
distributions and generalization capability between the pre-
trained ViT and CLIP, to ensure a fair and equitable compar-
ison, we conduct additional experiments with all comparison
methods and DART, utilizing the pre-trained CLIP model as
the same backbone. As demonstrated in Table 2, DART out-
performs the second-best player TPT by 3.37% at average
Acc@1 and 1.07% at average Acc@5 on all three datasets.
Specifically, our proposed DART significantly outperforms
TPT by 5.79% at Acc@1 on ImageNet-A. Since ImageNet-
A consists of natural images misclassified by ResNet-50,
this result verifies that our DART can well handle natu-

Learnable Text Prompt Acc@1
Unified Text Prompt in TPT (Shu et al. 2022) 57.27
[“a photo of a” + CLS] 59.53
[“a photo of a”] in DART 60.56

Table 4: Ablation study about the influence of different
learnable text prompts.

ral distribution shifting in the test phase. The same con-
clusion can also be confirmed by the experimental results
on ImageNet-R and ImageNet-Sketch. Notably, when SAR
employs ViT as the backbone, it achieves comparable per-
formance as our DART at Acc@1 on ImageNet-Sketch.
However, when using the same CLIP backbone, DART sig-
nificantly outperforms SAR by 2.17%. This is credited to
DART’s dual-modal online prompting and knowledge reten-
tion prompts, which effectively tap into and utilize informa-
tion from samples during test time, even in cases of signifi-
cant style variations in the samples (e.g. cartoon).

Ablation Studies and Analyses
The Influence of Different Components in DART. To
verify the effectiveness of the proposed dual-modal adap-
tive online prompting and knowledge retention compo-
nents in our DART, an ablation experiment is conducted on
ImageNet-A. As demonstrated in Table 3, utilizing either the
instance-level text prompts PT or the image prompts PI

consistently enhance the robustness against the distribution
shifting compared to the naive zero-shot CLIP. Moreover,
with the integration of the text knowledge retention prompts
P̃
T

or image knowledge retention prompts P̃
I
, performance

is further elevated beyond the utilization of single-modal
prompts PT , PI alone. This improvement can be attributed
to the inherent ability of knowledge retention prompts to
adaptively retain knowledge. Notably, employing the whole
dual-modal adaptive online prompting and knowledge re-
tention components yields the best results, as it efficiently
captures information from each individual test sample and
retains the knowledge from previously seen test samples,
thereby facilitating the performance of the pre-trained CLIP.
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Figure 3: Ablation study about the generalization across dif-
ferent backbones on ImageNet-A.

The Influence of Different Learnable Text Prompts
in DART. Different from TPT which learns a unified text
prompt for all categories, our proposed DART proposes to
utilize class-specific text prompts initialized as “a photo of
a” for different categories during the test time. From the re-
sults on ImageNet-A in Table 4, our proposed class-specific
text prompts outperform the unified text prompt by a margin
of 3.29% at Acc@1. The reason is that our class-specific text
prompts are more flexible to capture and highlight the class-
specific information of the test sample. Moreover, an extra
experiment that simultaneously updates our class-specific
text prompts and the CLS token at test time reports inferior
performance than ours. This is mainly because the impor-
tant semantic information contained by the CLS token may
be hindered during online learning.

The Generalization across Different Backbones. To
validate the generalization ability of DART, across differ-
ent backbones, we conduct experiments using pre-trained
CLIP models with various backbones. As shown in Fig-
ure 3, when employing the ViT-B/32, DART exhibits signif-
icant improvements at Acc@1 compared to CLIP and TPT,
with increments of 11.81% and 6.79% respectively. For the
higher-parameter ViT-L/14, DART demonstrates enhance-
ments of 8.2% and 2.14% at Acc@1 compared to CLIP
and TPT respectively. Furthermore, across different back-
bones, DART consistently exhibits further advancements at
Acc@5 over CLIP and TPT. This can be credited to DART’s
dual-modal online prompting, which introduces additional
learnable parameters as the backbone is frozen. This en-
ables DART to adapt the pre-trained CLIP model across
both modalities. Moreover, the dual-modal knowledge re-
tention prompts effectively preserve and leverage knowledge
learned from seen test samples, resulting in superior perfor-
mance.

The Influence of Different Hyper-parameters in
DART. There are several hyper-parameters in our DART.
We initially conduct experiments to investigate the influence
of the hyper-parameter h in Eq. 7, which is responsible for
generating the adaptive weight βt. As illustrated in Figure 4,
DART demonstrates insensitivity to variations in h. Notably,
DART shows remarkable performance when h falls within
the range of 4500 to 6000. This is attributed to a favor-
able balance achieved between the retention of newly ac-
quired knowledge and historical knowledge. Subsequently,
we explore the impact of the fusion coefficients wT and wI

Acc@5

Acc@1

Acc@5

Acc@1

Acc@5

Acc@1

Acc@5

Acc@1

Figure 4: Ablation study about the influence of different
hyper-parameters on ImageNet-A.

employed in Eq. 10 and Eq. 11. These coefficients exhibit
a similar trend, with their optimal performance observed
within the range of 0.05 to 0.15. This outcome demonstrates
that while knowledge retained through retention prompts
provides auxiliary support, newly captured knowledge re-
mains more crucial and tailored for accurate predictions on
the current samples. Then we conduct experiments to inves-
tigate which layer of the image encoder the proposed image
prompts pI should be added. Considering the limited learn-
ing condition (only one test sample available) during online
test time, we propose to add the prompts to only one layer.
As presented in Figure 4, adding the prompts to the second
layer of the image encoder performs the best.

Conclusion
In conclusion, we propose a novel dual-modal adaptive on-
line prompting and knowledge retention method, named
DART, for test-time adaptation of CLIP-based pre-trained
vision-language models. Specifically, our approach involves
learning class-specific text prompts and instance-level im-
age prompts for each test sample, effectively capturing the
knowledge within an individual test sample to enhance the
model’s prediction accuracy. Moreover, we design text and
image knowledge retention prompts to adaptively retain
and utilize the knowledge from previously seen test sam-
ples, to facilitate the predictions of subsequent test samples.
This enables our DART to adapt to new test instances and
improve overall performance during test-time adaptation.
Extensive experiments on various large-scale benchmarks
demonstrate the effectiveness of DART against state-of-the-
art approaches. Our work investigates a promising direction,
addressing the challenging problem of training-test data dis-
tribution shifting in pre-trained vision-language models us-
ing dual-modal prompting and knowledge retention.
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