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Abstract

Lifelong person re-identification (LReID) aims to train a uni-
fied model from diverse data sources step by step. The severe
domain gaps between different training steps result in catas-
trophic forgetting in LReID, and existing methods mainly
rely on data replay and knowledge distillation techniques
to handle this issue. However, the former solution needs to
store historical exemplars which inevitably impedes data pri-
vacy. The existing knowledge distillation-based models usu-
ally retain all the knowledge of the learned old models with-
out any selections, which will inevitably include erroneous
and detrimental knowledge that severely impacts the learn-
ing performance of the new model. To address these issues,
we propose an exemplar-free LReID method named Long-
Short Term Knowledge Consolidation (LSTKC) that contains
a Rectification-based Short-Term Knowledge Transfer mod-
ule (R-STKT) and an Estimation-based Long-Term Knowl-
edge Consolidation module (E-LTKC). For each learning it-
eration within one training step, R-STKT aims to filter and
rectify the erroneous knowledge contained in the old model
and transfer the rectified knowledge to facilitate the short-
term learning of the new model. Meanwhile, once one train-
ing step is finished, E-LTKC proposes to further consolidate
the learned long-term knowledge via adaptively fusing the pa-
rameters of models from different steps. Consequently, exper-
imental results show that our LSTKC exceeds the state-of-
the-art methods by 6.3%/9.4% and 7.9%/4.5%, 6.4%/8.0%
and 9.0%/5.5% average mAP/R@1 on seen and unseen do-
mains under two different training orders of the challenging
LReID benchmark respectively.

Introduction
Person re-identification (ReID) aims to retrieve the per-
son of interest from a collection of images. However, nu-
merous investigations (Wang et al. 2022a; Zhao et al.
2021b) have observed that ReID models trained on a spe-
cific and stationary dataset often exhibit inadequate per-
formance when confronted with new datasets. This lim-
itation has sparked increasing interest in lifelong per-
son re-identification (LReID), which focuses on continu-
ously learning informative knowledge from a stream of
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Figure 1: To prevent erroneous knowledge distillation and
facilitate old knowledge consolidation, we propose a Short-
Term Knowledge Transfer mechanism to distill the correct
knowledge of the old model and a Long-Term Knowledge
Consolidation mechanism to accomplish knowledge-guided
model fusion.

datasets (Pu et al. 2021). Similar to other lifelong learn-
ing tasks (Liang et al. 2022), the challenge of catastrophic
forgetting emerges as a critical obstacle due to the discrep-
ancy in knowledge across diverse datasets. To handle this is-
sue, several LReID approaches aim to retain exemplars from
the old datasets as the rehearsal of historical knowledge for
the learning of new models (Wu and Gong 2021; Ge et al.
2022; Yu et al. 2023). However, this solution will indeed
impede data privacy and suffer from considerable computa-
tional overheads. Therefore, we concentrate on a more prac-
tical but challenging LReID setting where no exemplars can
be preserved for new model learning.

In addition to exemplar preservation, a majority of exist-
ing LReID approaches strive to alleviate catastrophic forget-
ting through knowledge distillation (Pu et al. 2021; Sun and
Mu 2022; Yu et al. 2023), primarily aimed at ensuring out-
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put consistency for new data across both old and new mod-
els. However, such stringent constraints significantly curtail
the model’s ability to acquire new knowledge (Wu and Gong
2021; Pu et al. 2021). Indiscriminately distilling the knowl-
edge from old models to the new ones will inevitably intro-
duce erroneous and detrimental information conflicting with
the new data, leading to significant performance degrada-
tion (as is shown in Figure 1 (a)). On the other hand, without
preserving any historical exemplars, it is hard to effectively
and comprehensively retain all the informative knowledge
from old models through knowledge distillation using only
new data. This oversight leads to severe forgetting of old
knowledge in the long run and subsequently results in infe-
rior overall LReID performance.

To address the above issues, we propose a novel
Long Short-Term Knowledge Consolidation model, named
LSTKC, which can not only actively filter and rectify the
erroneous knowledge to enhance short-term knowledge ac-
quisition, but also adaptively balance the old and new knowl-
edge via model fusion to mitigate the long-term catastrophic
forgetting. Specifically, we first represent the transferable
knowledge as a pair-wise relation matrix (RM), where each
element represents the affinity between two samples within
one mini-batch of new data. Both the old and new LReID
models are utilized to achieve a pair of RM. Then, as is
shown in Figure 1 (b), a Rectification-based Short-Term
Knowledge Transfer module (R-STKT) is proposed to filter
and rectify the erroneous knowledge contained in the RM
based on the annotation information of new data. A short-
term relation knowledge transfer loss is adopted to transfer
the knowledge within rectified old model relation matrix to
the new model. Furthermore, when the new model is up-
dated on the new dataset, an Estimation-based Long-Term
Knowledge Consolidation module (E-LTKC) is proposed to
automatically estimate the degree of long-term knowledge
forgetting by leveraging the differences between the afore-
mentioned relation matrices of old and new models. Finally,
a knowledge-guided model fusion strategy is designed to
adaptively balance the new and old knowledge.

To sum up, the contributions of this paper are as follows:
(1) A long short-term knowledge consolidation (LSTKC)
model is proposed for LReID, which contains a novel
Rectification-based Short-Term Knowledge Transfer Mod-
ule (R-STKT) and an effective Estimation-based Long-Term
Knowledge Consolidation Module (E-LTKC). (2) The pro-
posed R-STKT mechanism performs relation matrix-based
erroneous knowledge filtering and rectification to facilitate
the correct knowledge transfer within the short-term learn-
ing stage. (3) The proposed E-LTKC module proposes to ac-
tively balance the forgetting and acquisition of old and new
knowledge via a knowledge-guided model fusion strategy
to consolidate long-term knowledge. (4) Extensive experi-
mental results demonstrate that our proposed LSTKC model
exceeds state-of-the-art LReID methods by a large margin
in different settings.

Related Work
Person Re-Identification
Person Re-Identification (ReID) aims to justify if given im-
ages from distinct cameras, times, and locations contain the
same person (Ahmed, Jones, and Marks 2015; Li, Zhu, and
Gong 2018; Luo et al. 2019). It has been extensively stud-
ied in a close setting, where the scenarios of the test data are
identical to the training ones (Zhuang et al. 2020; He et al.
2021; Chen et al. 2017). However, such a training procedure
though works well on seen datasets, often exhibits signifi-
cant performance degradation on different datasets, inhibit-
ing the practical usage of the existing ReID models (Liu
et al. 2019; Song et al. 2019). Therefore, in this paper, we
study the Lifelong Person Re-Identification (LReID) task to
enable the model to consistently learn from labeled data of
diverse datasets that could adapt to various conditions.

Lifelong Person Re-Identification
LReID has drawn increasing attention in recent years. Sim-
ilar to other lifelong learning tasks (Wang et al. 2022b),
the catastrophic forgetting problem (Li and Hoiem 2017;
Shmelkov, Schmid, and Alahari 2017) that the ReID per-
formance on historical datasets will degrade seriously when
a model is trained on new ones, is also the main challenge.
To overcome this problem, various methods have been pro-
posed which can be mainly categorized into two branches:
data replay-based methods and knowledge distillation-based
ones. The data reply-based approaches aim to prevent
knowledge forgetting via storing and replaying exemplars
from historical datasets (Wu and Gong 2021; Ge et al. 2022;
Yu et al. 2023; Chen, Lagadec, and Bremond 2022; Huang
et al. 2022). However, such a strategy tends to hinder data
privacy and incur substantial computational overheads.

The knowledge distillation technique is widely used in
LReID (Pu et al. 2021; Wu and Gong 2021; Ge et al. 2022;
Sun and Mu 2022) by forcing the new model to generate
consistent outputs as the old model. (Pu et al. 2021) was
one of the initial works that introduced Knowledge distil-
lation into the LReID task and adopted logistic distillation
which forced the new model to generate the same classifi-
cation score as the old model. (Sun and Mu 2022) designed
a patch distillation module that can recognize the important
regions of the image and distill the patch logits within such
regions. Besides, (Sun and Mu 2022) also proposed patch re-
lation distillation that constrains the new model to generate
the same relative inter-instance distances as the old model.
(Pu et al. 2022) claimed the crucial role of Batch Normaliza-
tion (BN) in data distribution shifting and proposed reconcil-
iation normalization to constrain the learning of BN layers.
Apart from the aforementioned exemplar-free LReID meth-
ods, various exemplar-based approaches also adopt knowl-
edge distillation to alleviate catastrophic forgetting (Wu and
Gong 2021; Ge et al. 2022; Yu et al. 2023).

However, imposing strict constraints on the output of
the new model often hampers its ability to adapt to new
domains. For example, PatchKD (Sun and Mu 2022) and
Lwf (Li and Hoiem 2017) experienced considerable per-
formance degradation when trained for several steps and
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applied to new datasets, compared to training them indi-
vidually on those datasets. Besides, the knowledge of the
old model may be erroneous, which could mislead the new
model if treated uniformly with the correct knowledge. Fi-
nally, when employing knowledge distillation strategies, it is
crucial to emphasize that only the knowledge that can be re-
flected by the new data is distilled, while any knowledge that
cannot be manifested in the new data is inevitably forgotten.

Method
Formulation
Lifelong person re-identification (LReID) assumes that var-
ious training datasets from different domains are given for
learning step by step, and the data of previous and later steps
are unavailable for the current step (Pu et al. 2021; Sun and
Mu 2022). Specifically, the training data consists of a stream
of T datasets D = {Dt}Tt=1 where each Dt = {(xi, yi)}nt

i=1
contains nt images xi and their identity labels yi. Note that
the identities between different training datasets are disjoint.
After the t-th training step, the leaned model is M∗t and
the finally obtained model after our method is Mt. Thus,
MT is the final model. During testing, to evaluate the ac-
quisition and anti-forgetting capacity of MT , a series of T
testing datasets Dtest = {Dtest

t }Tt=1 collected from all the
seen domains are evaluated. Besides, to verify the general-
ization capacity of MT , an additional series of U datasets
Dun = {Dun

t }Ut=1 from unseen domains are tested as well.

Overview
As shown in Figure 2, our method mainly contains a back-
bone network, i.e., (a) and (b), a Rectification-based Short-
Term Knowledge Transfer module (c) and an Estimation-
based Long-Term knowledge Consolidation module (d).

Base Model
The overall architecture of our model follows the typical
setting of existing LReID approaches (Pu et al. 2021; Sun
and Mu 2022) that adopt a CNN backbone to extract in-
put image features and utilize a classifier to predict person
identities. Specifically, the backbone and classifier of Mt

are denoted as Θt and Φt respectively. Given an input im-
age x ∈ RH×W×C , Θt converts x into a feature vector
v ∈ Rd, where H , W and C are the image height, width
and channel respectively, and d is the feature dimension.
Then Φt takes v as the input and generates logistic predic-
tions. Therefore, the overall model could be represented as
Mt(x; Θt,Φt) = Φt(Θt(x)). The learnable parameters in
Θt and Φt are optimized by a cross-entropy loss together:

LID = −y log (σ(Mt(x; Θt,Φt))) , (1)

where σ is the softmax function and y is the identity label of
x.

Furthermore, to enhance the discriminative capacity of the
model, a normalization-guided Triplet loss (Liu et al. 2017)
is adopted:

LTri = log(1 + exp(‖ ṽa − ṽp ‖22 − ‖ ṽa − ṽn ‖
2
2)), (2)

where ṽ is the L2-normalized version of v (corresponding to
the “Norm” module in Figure 2 (a) and (b)), and 〈a, p, n〉 is
a triplet set. Therefore, the overall optimization loss of the
base model is:

LBase = LID + γLTri, (3)

where γ is a hyperparameter to balance two components.
Following the existing works (Ge et al. 2022), for the first

training step, the parameters of Θ1 are initialized with the
ImageNet pre-trained model, and the parameters of Φ1 are
randomly initialized. For the later steps, the parameters of
Θt are initialized with Θt−1 and the parameters of Φt−1

which is a linear layer are initialized with the mean feature
of the identities in Dt.

Rectification-based Short-Term Knowledge
Transfer (R-STKT)
A core function of LReID models is to evaluate the simi-
larity between different person images. In light of this, we
delve into knowledge transfer through the lens of relation
distillation. Initially, we introduce a pairwise relation matrix
to effectively capture and encapsulate the knowledge em-
bedded within the features extracted from LReID models.

Pair-wise Relation Matrix: During training step t (t >
1), given a batch of data I = {(xt,i, yt,i)}Bi=1 where B is
the batch size. The feature extractor of M∗t covert I into a
feature matrix denoted as Vt ∈ RB×d. Then we use L2 nor-
malization to process Vt at the channel dimension and obtain
Ṽt. A pair-wise similarity matrix St ∈ RB×B is calculated
by St = Ṽt · (Ṽt)> which can be utilized to further calculate
the pair-wise relation matrix Rt ∈ RB×B :

Rt[i, j] =
exp(St[i, j]/τ)∑B
k=1 exp(St[i, k]/τ)

, (4)

where [i, j] denotes the i-th row, j-th column of the corre-
sponding matrix, and τ is a temperature hyper-parameter.
Note that each row of Rt is a softmax-like function that
maps each row of similarity matrix St into a relation score
vector which reflects the overall affinity score between xt,i
and other images in I. When 1/τ is large, the high similarity
pairs will dominate the relation scores in Rt which can as-
sure that similar pairs are assigned more attention compared
to dissimilar ones during the following knowledge transfer.

Besides, to represent the pair-wise relation knowledge of
the old model Mt−1, we feed the current batch I into Mt−1

to obtain the pair-wise relation matrix Rt−1 following the
above manner.

Erroneous Knowledge Filtering: Due to the data varia-
tions between different lifelong learning steps, directly dis-
tilling the knowledge in the relation matrix Rt−1 of the
old model to learn Rt will inevitably introduce erroneous
knowledge that the matching relationships in Rt−1 are in-
correct. The potential presence of such incorrect knowledge
from the old model might misguide the learning process of
the new model. To address this issue, we propose to filter out
and rectify the erroneous relation knowledge fromRt−1, en-
suring the transferred knowledge is correct and informative.
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Figure 2: The overall pipeline of our proposed LSTKC. (a) and (b) are the old and new models respectively. (c) is the
Rectification-based Short-Term Knowledge Transfer module (R-STKT) that rectifies the erroneous old knowledge in a relation
matrix, then distills the rectified relation matrix to the new model to achieve correct knowledge transfer. (d) is the Estimation-
based Long-Term Knowledge Consolidation module (E-LTKC) that evaluates the knowledge difference between the new and
old models so as to accomplish knowledge-guided model fusion. (e) is the illustration of the knowledge rectification procedure.

As is illustrated in Figure 2 (e), we split Rt−1 into true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) groups where FP and FN are the erro-
neous relations, where true/false denotes a specific element
in the relation matrix is correct/erroneous, and positive/neg-
ative denotes the corresponding pair of the element is/not
the same person according to annotation. To achieve this, we
design two thresholds to separate TP/FP and TN/FN respec-
tively. Specifically, given the i-th row of Rt−1, the positive
and negative pairs could be separated beforehand according
to the identity annotations. Then the maximum negative re-
lation score si,n and the minimum positive relation score
si,p of i-th row of Rt−1 could be obtained. Finally, si,n and
si,p are set as the thresholds for positive and negative pairs
respectively, where for the positive pairs, the ones whose re-
lation score are higher than si,n are set as TP, and for the
negative pairs, the ones whose relation score are higher than
si,n are set as FP.

Erroneous Knowledge Rectification: For a given row i-
th of Rt−1, we replace the FP elements with si,p and the FN
elements with si,n. The resulting rectified matrix is denoted
as Rre

t−1. Note that when false predictions occur, si,p is al-
ways smaller than si,n, so it could be assured that all scores
of the true pairs are always higher than the scores of the false
pairs in rectified matrix R∗t−1. Then, in order to ensure that
the rows of the rectified relation matrix adhere to the proba-
bility law, we apply L1 normalization to each row of R∗t−1,

and the resulting matrix is denoted R̃t−1.
To transfer the relation knowledge from the old model

Mt−1 to the current model Mt, we adopt Kullback Leibler
divergence (KL) which is calculated by:

LKL =
1

B

B∑
i=1

KL(Rt−1[i, :]
∣∣∣∣Rt[i, :]), (5)

where [i, :] denotes the i-th row of corresponding matrix.
The normalized rectified relation matrix R̃t−1 is set as the
target distribution and the relation matrix Rt generated by
the current model is set as the source distribution.

Estimation-based Long-Term Knowledge
Consolidation (E-LTKC)
Although the R-STKT accomplishes short-term correct
knowledge transfer between adjacent training steps, due to
the domain gap between different datasets, the knowledge of
the old model is hard to fully reflect in new data. In this sec-
tion, we aim to achieve long-term knowledge consolidation
by fusing the models of different stages. Instead of using
fixed fusion parameters, We propose adaptively balancing
the new and old knowledge based on the knowledge differ-
ence estimation of the new and old models.

Knowledge-Guided Model Fusion With a little abuse
of Rt−1 and Rt which denotes the extracted relation ma-
trix from all training data Dt by Mt−1 and M∗t respec-
tively here. As is shown in Figure 2(d), firstly, we obtain
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Method
Market CUHK-SYSU DukeMTMC MSMT17 CUHK03 Seen-Avg Unseen-Avg

mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1
Finetune 32.7 58.3 58.0 60.6 25.2 43.8 4.5 13.1 41.3 43.4 32.3 43.9 38.4 34.4
JointTrain 68.1 85.2 81.4 83.8 60.4 75.7 24.6 48.9 42.7 43.6 55.4 67.5 49.8 46.3
SPD (Tung and Mori 2019) 35.6 61.2 61.7 64.0 27.5 47.1 5.2 15.5 42.2 44.3 34.4 46.4 40.4 36.6
LwF (Li and Hoiem 2017) 56.3 77.1 72.9 75.1 29.6 46.5 6.0 16.6 36.1 37.5 40.2 50.6 47.2 42.6
CRL (Zhao et al. 2021a) 58.0 78.2 72.5 75.1 28.3 45.2 6.0 15.8 37.4 39.8 40.5 50.8 47.8 43.5
AKA (Pu et al. 2021) 51.2 72.0 47.5 45.1 18.7 33.1 16.4 37.6 27.7 27.6 32.3 43.1 44.3 40.4
AKA* (Pu et al. 2021) 47.2 69.8 72.8 76.5 26.6 44.3 6.2 17.2 42.2 43.6 39.0 50.3 47.7 41.6
PatchKD (Sun and Mu 2022) 68.5 85.7 75.6 78.6 33.8 50.4 6.5 17.0 34.1 36.8 43.7 53.7 49.1 45.4
Ours 54.7 76.0 81.1 83.4 49.4 66.2 20.0 43.2 44.7 46.5 50.0 63.1 57.0 49.9

Table 1: Training order-1: Market-1501→ CUHK-SYSU→ DukeMTMC-reID→ MSMT17-V2→ CUHK03. ‘*’ denotes our
re-implementation with the same batch size as ours based on AKA official code.

Method
DukeMTMC MSMT17 Market CUHK-SYSU CUHK03 Seen-Avg Unseen-Avg
mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1 mAP R@1

Finetune 26.1 45.7 3.3 10.3 29.1 54.1 57.2 60.0 40.3 40.9 31.2 42.2 36.1 32.0
JointTrain 60.4 75.7 24.6 48.9 68.1 85.2 81.4 83.8 42.7 43.6 55.4 67.5 49.8 46.3
SPD (Tung and Mori 2019) 28.5 48.5 3.7 11.5 32.3 57.4 62.1 65.0 43.0 45.2 33.9 45.5 39.8 36.3
LwF (Li and Hoiem 2017) 42.7 61.7 5.1 14.3 34.4 58.6 69.9 73.0 34.1 34.1 37.2 48.4 44.0 40.1
CRL (Zhao et al. 2021a) 43.5 63.1 4.8 13.7 35.0 59.8 70.0 72.8 34.5 36.8 37.6 49.2 45.3 41.4
AKA (Pu et al. 2021) 32.5 49.7 - - - - - - - - - - 40.8 37.2
AKA* (Pu et al. 2021) 37.9 55.9 5.2 14.4 36.6 59.0 72.9 76.0 41.6 41.9 38.8 49.4 44.9 38.5
PatchKD (Sun and Mu 2022) 58.3 74.1 6.4 17.4 43.2 67.4 74.5 76.9 33.7 34.8 43.2 54.1 48.6 44.1
Ours 49.9 67.6 14.6 34.0 55.1 76.7 82.3 83.8 46.3 48.1 49.6 62.1 57.6 49.6

Table 2: Training order-2: DukeMTMC-reID→ MSMT17-V2→Market-1501→ CUHK-SYSU→ CUHK03. ‘*’ denotes our
re-implementation with the same batch size as ours based on AKA official code.

the element-wise absolute difference of Rt−1 and Rt named
R∆

t ∈ Rnt×nt . Then we convert R∆
t into a scalar δt by:

δt =
1

nt

nt∑
i=1

(

nt∑
j=1

R∆
t [i, j]), (6)

where
∑nt

j=1R
∆
t [i, j] denotes row-wise addition that

evaluates the knowledge difference reflected on image xt,i,
and 1

nt

∑nt

i=1(·) calculates average knowledge difference of
Dt, which represents the between Mt−1 and M∗t . Then we
obtain the final model Mt in step t by:

Mt = (1− δt)M∗t + δtMt−1, (7)

where δt serves as a weight balancing the new and old
knowledge.

After the lifelong learning procedure with T steps, the fi-
nal model MT could be represented as

MT = (1− δT )M∗T + δT ((1− δT−1)M∗T−1 + δT−1...)

= βT M∗T + βT−1M∗T−1 + ...+ β1M∗1
,

(8)

where βt = (1− δt)
T∏

i=t+1

δi, and δ1 = 0 because the model

of the first step does not need fusion. It is obvious that the
final model is equivalent to a weighted fusion of all previous
models that assures long-term knowledge consolidation.

Training and Inference
During the t-th training step, only the old model Mt−1 and
the new data Dt are utilized to learn M∗t . The proposed
R-STKT is adopted along the model learning and the total
training loss function is formulated as

L = LBase + LKL, (9)

At the end of the t-th training step, we adopt E-LTKC to fuse
Mt−1 and M∗t and obtain the final model Mt.

During inference, the model MT obtained after training
step T , followed by L2 normalization, is used to extract im-
age features for image ranking.

Experiments
Datasets
We conducted all our experiments on the widely-used
LReID benchmark (Pu et al. 2021), which consists of 12
datasets. Among them, five datasets (Market-1501 (Zheng
et al. 2015), DukeMTMC-reID (Ristani et al. 2016),
CUHK-SYSU (Xiao et al. 2016), MSMT17-V2 (Wei et al.
2018), and CUHK03 (Li et al. 2014)) are seen datasets
used for LReID training and anti-forgetting testing. The
remaining seven datasets (CUHK01 (Li, Zhao, and Wang
2012), CUHK02 (Li and Wang 2013), VIPeR (Gray and Tao
2008), PRID (Hirzer et al. 2011), i-LIDS (Branch 2006),
GRID (Loy, Xiang, and Gong 2010), and SenseReID (Zhao
et al. 2017)) are unseen datasets used solely for testing
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purposes. Note that the LReID benchmark selects 500
identities from each seen dataset for training. Typically,
two training orders are adopted: Market-1501→CUHK-
SYSU→DukeMTMC-reID→MSMT17→CUHK03 and
DukeMTMC-reID→MSMT17→Market-1501→CUHK-
SYSU→CUHK03. For more detailed information about
these datasets, please refer to the Supplementary.

Evaluation Metrics Following the evaluation settings of
the existing methods (Pu et al. 2021; Sun and Mu 2022),
we calculate mean Average Precision (mAP) and Rank@1
(R@1) accuracy on each dataset and use the average of mAP
and R@1 results on the seen and unseen datasets to evaluate
the overall performance of our method.

Implementation Details
Following previous works (Pu et al. 2021; Sun and Mu
2022), we adopt ResNet-50 (He et al. 2016) pre-trained on
ImageNet (Deng et al. 2009) as our backbone. For both train-
ing orders, the first dataset is trained for 80 epochs and the
subsequent datasets are trained for 60 epochs using an SGD
optimizer with a momentum of 0.9. The learning rate is set to
8×10−3 initially with 0.1 decay at the 30th epoch. The input
images are resized to 256×128 with random cropping, eras-
ing, and horizontal flipping augmentation. The batch size is
set to 128 with 32 identities and 4 images for each identity.
The hyperparameter γ and τ are set to 1 and 0.1 respectively.
Our implementation is based on PyTorch. All experiments
are conducted on a single NVIDIA 4090 GPU.

Comparison with the State-of-the-art (SOTA)
Comparison Methods: In the following experiments, we
compare our LSTKC method with classical lifelong learning
techniques, namely LwF (Li and Hoiem 2017), SPD (Tung
and Mori 2019), as well as the most recent exemplar-free
LReID approaches, AKA (Pu et al. 2021), PatchKD (Sun
and Mu 2022), CRL (Zhao et al. 2021a). Besides, the term
“Finetune” refers to training the datasets step by step without
any anti-forgetting design. On the other hand, “JointTrain”
represents aggregating all available training data to jointly
train the model, which is commonly regarded as the upper
bound performance of LReID. All compared experimental
results follow the report from PatchKD (Sun and Mu 2022)
or the official publications if not explicitly stated.

Results on Seen Datasets: Table 1 and Table 2 show
the results on the LReID benchmark under training order-
1 and training order-2 respectively. It can be observed that
on the seen datasets, we achieve 6.3%/9.4% and 6.4%/8.0%
mAP/R@1 improvement over SOTA PatchKD under train-
ing order-1 and training order-2 separately. In particular,
our model achieves the highest mAP/R@1 on four of five
datasets under both training orders with significant improve-
ment. On the first dataset of both training orders, we achieve
inferior performance compared to SOTA approaches, this
may result from the strict knowledge distillation loss used
in SOTA approaches forcing the network to maintain the
learned architecture on the first dataset. However, the results
in the subsequent steps show that such a strong constraint to
the model output limits its new knowledge acquisition ca-
pacity. In contrast, our model, thanks to the pair-wise re-

Baseline R-STKT E-LTKC Seen-Avg Unseen-Avg
mAP R@1 mAP R@1

X 40.4 53.3 48.2 41.4
X X 46.1 59.7 54.2 47.9
X X 46.3 59.5 53.6 46.2
X X X 50.0 63.1 57.0 49.9

Table 3: Ablation study on individual components of R-
STKT and E-LTKC.

Strategy
Seen-Avg Unseen-Avg

mAP R@1 mAP R@1
Baseline 40.4 53.3 48.2 41.1
Max-Min 43.4 56.8 51.9 45.3
1-Minuscule 25.3 33.8 36.0 28.7
Ours 46.1 59.7 54.2 47.9

Table 4: Ablation on knowledge rectification strategy of R-
STKT. The experiments are conducted without E-LTKC.

lation transfer design and the adaptively long-term knowl-
edge balancing mechanism, better achieves progressive new
knowledge acquisition and consolidation, obtaining state-of-
the-art results on most datasets and significantly improving
the average performance.

Results on Unseen Datasets
The results on unseen datasets are shown in the “Unseen-
Avg” items in Table 1 and Table 2. Our method out-
performs SOTA PathchKD by 7.9%/4.5% and 9.0%/5.5%
on mAP/R@1 under training order-1 and training order-
2 respectively, showing the overwhelming generalization
capacity of our method compared existing LReID ap-
proaches. Furthermore, our method achieves 7.2%/3.6% and
7.8%/3.3% higher mAP/R@1 than JointTrain respectively.
Note that our LSTKC outperforms JointTrain on unseen do-
mains, showing that our short-term knowledge rectification
and long-term knowledge consolidation mechanisms could
preserve abundant generalizable knowledge.

Ablation Studies
In this section, we conduct experiments on the LReID
benchmark under training order-1 to evaluate the effective-
ness of each component in our model.

The effectiveness of R-STKT and E-LTKC modules:
In Table 3, we present the ablation studies of R-STKT and
E-LTKC. We start from a baseline model that merely uses
Lbase as the loss function and adds R-STKT/E-LTKC grad-
ually. From the second row and the third row, we can ob-
serve that R-STKT and E-LTKC could improve mAP/R@1
by about 4.8-6.2% over baseline when used alone. When
they are used together, the improvement is up to 8.5-9.8%.
The results show that both R-STKT and E-LTKC can work
individually and cooperatively.

Ablation on knowledge rectification strategy: Knowl-
edge rectification plays a vital role in R-STKT. We in-
troduce different knowledge rectification strategies includ-
ing replacing the false negative and false positive affinity
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Strategy
Seen-Avg Unseen-Avg

mAP R@1 mAP R@1
Baseline 40.4 53.3 48.2 41.1
MSE 40.9 53.6 49.0 42.3
MAE 41.5 54.3 50.4 43.3
JS 45.3 58.6 53.7 47.1
KL (Ours) 46.1 59.7 54.2 47.9

Table 5: Ablation on Affinity Loss of R-STKT. The experi-
ments are conducted without E-LTKC.

Strategy
Seen-Avg Unseen-Avg

mAP R@1 mAP R@1
R-STKT-only 46.1 59.7 54.2 47.9
Fixed (0.5) 49.5 61.3 55.7 48.2
Time-increasing 46.3 57.0 51.7 44.9
Time-descending 48.9 62.0 56.1 49.0
Knowledge-guided (Ours) 50.0 63.1 57.0 49.9

Table 6: Ablation on choices of model fusion.

with (a) the maximum and minimum affinities of each per-
son (noted as Max-Min), (b) 1 and minuscule value (noted as
1-Minuscule) respectively. The results are shown in Table 4.
It can be observed that our method performs the best and
both our method and Max-Min strategy outperform the base-
line, while 1-Minuscule only obtains much inferior perfor-
mance. This is because compared to our method, Max-Min
modifies the original affinity more and 1-Minuscule modi-
fies even more. Because the change of specific affinity in-
volves the entire affinity distribution alteration within each
row of the relation Matrix, too much modification would de-
stroy the correct knowledge and hinder the correct knowl-
edge transfer. Compared to the other two methods, our recti-
fication strategy not only corrects the erroneous knowledge
but also largely retrains the original relation distribution.
Therefore, our strategy is a better selection.

Ablation on the choices of knowledge transfer loss: We
also conduct ablation experiments on the choices of knowl-
edge transfer loss by replacing our KL divergence with
MSE (Park et al. 2019), MAE, and Jensen-Shannon diver-
gence (Yu et al. 2023) that are frequently adopted in rele-
vant works. The results are shown in Table 5, showing that
KL is the best choice to accomplish knowledge transferring.
This is because KL is designed for knowledge transfer from
target distribution to source distribution, which corresponds
with the objective of R-STKT.

Ablation on the choices model fusion: To show the ef-
fectiveness of our knowledge-guided model fusion strategy
in the E-LTKC module, we compared some popular choices
including (a) a fixed parameter 0.5, (b) a time-increasing pa-
rameter 1− 1/t, (c) a time-descending parameter 1/t (Pu
et al. 2021; Lin, Chu, and Lai 2022). The results are shown
in Table 6. It can be observed that our knowledge-guided
model fusion strategy outperforms all compared choices on
both seen and unseen datasets, showing our active balance
strategy could better consolidate the valid knowledge.

0   5    10 15 20 25      30 0        5  10  15  20  25 30 
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(a) Ground truth (b) Distillation w/o rectification
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Figure 3: We visualize the relation matrix of test images to
show the effectiveness of our proposed knowledge rectifica-
tion (R-STKT) and consolidation (E-LTKC) strategy.

Visualization Studies
To intuitively show the effectiveness of our knowledge rec-
tification (R-STKT) and consolidation (E-LTKC) mecha-
nisms, we visualize the image relation matrix shown in Fig-
ure 3 based on test samples from the DukeMTMC-reID
dataset under training order-1. The Ground Truth matrix (a)
is generated according to the person identity annotations.
Compared to (b) which uses the distillation loss without
rectification, as highlighted by the red rectangle, our R-
STKT (c) significantly improves the number of true positive
pairs. On the other hand, when R-STKT collaborates with
E-LTKC (d), not only are the true positive pairs improved,
but the false positive pairs are reduced, further interpreting
how R-STKT and E-LTKC mutually reinforce each other.

Conclusion
In this paper, we propose an exemplar-free LReID method
named long short-term knowledge consolidation (LSTKC).
Specifically, it contains a rectification-based short-term
knowledge transfer module (R-STKT) and an estimation-
based long-term knowledge consolidation module (E-
LTKC). R-STKT aims to filter and rectify the erroneous
knowledge of the old model and transfer the rectified knowl-
edge to the new model. R-STKT aims to automatically es-
timate the knowledge difference between the new and old
models, and accomplish a long-term balance of acquired
knowledge. Extensive experimental results show that both
modules could perform effectively and mutually reinforce
each other, making our performance exceed SOTA PatchKD
by at least 6.3%/8.0% and 7.9%/4.5% Average mAP/R@1
on the seen and unseen domain respectively.
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