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Abstract

Supervised dimensionality reduction for sequence da-

ta projects the observations in sequences onto a low-

dimensional subspace to better separate different sequence

classes. It is typically more challenging than conventional

dimensionality reduction for static data, because measur-

ing the separability of sequences involves non-linear pro-

cedures to manipulate the temporal structures. This paper

presents a linear method, namely Order-preserving Wasser-

stein Discriminant Analysis (OWDA), which learns the pro-

jection by maximizing the inter-class distance and minimiz-

ing the intra-class scatter. For each class, OWDA extracts

the order-preserving Wasserstein barycenter and constructs

the intra-class scatter as the dispersion of the training se-

quences around the barycenter. The inter-class distance is

measured as the order-preserving Wasserstein distance be-

tween the corresponding barycenters. OWDA is able to con-

centrate on the distinctive differences among classes by lift-

ing the geometric relations with temporal constraints. Ex-

periments show that OWDA achieves competitive results on

three 3D action recognition datasets.

1. Introduction

The sequence classification problem arises in a wide

range of real-world applications. A sequence is comprised

of a series of ordered observations, where each individual

observation is generally of no special interest, but the se-

quence as a whole represents the target object. The obser-

vations in the same sequence are not independent and their

relationship reveals the temporal structure of the sequence.

The similarity between sequences, which plays a cru-

cial role in classification, should take not only all the pair-

wise vector-level distances between observations but also

such temporal dependencies into consideration. In most

similarity measures for sequences, the temporal dependen-

cies and alignments need to be inferred from the matrix of

pairwise distances between observations under the tempo-

Figure 1. Top: the DTW [26] alignment. The alignment matrix is

shown on the right. The white grid in row i and column j indicates

that the i-th and j-th observations in the two sequences are aligned.

Bottom: the OPW [34] alignment. The transport matrix is shown

on the right. The grey value of a grid indicates the probability of

aligning the corresponding observations.

ral constraints. The complexity of constructing the pair-

wise distance matrix highly depends on the dimensionali-

ty of observations in sequences. Lower-dimensional repre-

sentations have a significant effect on reducing the running

time of calculating the similarity and building the subse-

quent models or classifiers. Discriminative representations

that lead to small similarities for different patterns and large

similarities for the sequences from the same class generally

improve the classification performance.

Supervised dimensionality reduction for sequence data

(DRS) attempts to learn such low-dimensional discrimina-

tive representations for observations in sequences by trans-

forming the observations in the noisy high-dimensional

space to a subspace. Generally, the transformation is

learned by measuring the similarity or separability among

sequences from different classes. However, unlike vector

data, the representations of observations not directly act on

the similarity between sequences but go through a nonlin-
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ear warping or alignment inference. This makes it difficult

to build the separability among sequence classes, formulate

the discriminant objective, and develop efficient solutions.

Most existing DRS methods [29, 33, 30] employ dynam-

ic time warping (DTW) [26] to perform the alignment. Due

to the boundary condition and the strict order-preserving

constraint, DTW cannot tackle local reorder distortions and

may not fully capture the essential differences of differen-

t patterns. As shown in Fig. 1, the two action sequences

“jump” and “run” differ in the boxed parts, where “jump”

vacates after a run-up. In the beginning, the two sequences

start from different poses, one takes the right leg first and

the other takes the left leg first, resulting in reordered poses.

Some different running poses are wrongly aligned by DTW

(shown in blue bold). The vacated poses of “jump” are

forced to align to a single pose of “run” (shown in green).

In this paper, we propose a linear supervised DRS

method by employing the order-preserving Wasserstein

(OPW) distance [34, 35] as the similarity measure between

sequences. For each class, we extract the order-preserving

Wasserstein barycenter and measure the dispersion of train-

ing sequences around the barycenter w.r.t. the OPW dis-

tance. We measure the inter-class separability between t-

wo classes as the OPW distance between the corresponding

barycenters. In this way, the intra- and inter-class separabil-

ities are uniformly measured with OPW. We learn the trans-

formation by maximizing the overall separability.

OPW casts the temporal alignment as a transport prob-

lem. It encourages transport between temporally adjacen-

t observations, but allows local reorders or distortions. In

Fig. 1, the reordered running poses are correctly aligned by

OPW. For the boxed parts, the vacated poses of “jump” are

dispersedly aligned to different poses in a periodic cycle of

“run” (shown in red). OPW is able to determine the true

distinctive observation pairs that reflect the essential differ-

ences of two sequences, so that the DRS method can focus

on discriminating these distinctions. In addition, different

from the binary DTW alignment, the transport measures the

probabilities of how different observation pairs contribute

to the total difference. The probabilities among the boxed

parts are scattered and more local relations among all ob-

servations are considered by the proposed DRS method.

The main contributions of this paper are three-fold. 1.

We propose novel OPW-based separability measures among

sequence classes which reflect their essential differences.

2. We provide mathematical derivations to compute the

barycenter. 3. We construct new intra-class and inter-class

scatters based on the learned optimal transports to employ

more local pairwise differences.

2. Related Work

Supervised linear dimensionality reduction for static da-

ta has been extensively studied in the literature. The well-

known linear discriminant analysis (LDA) learns the projec-

tion by maximizing the ratio of inter-class distance to the

intra-class distance. Various methods are proposed to im-

prove or extend LDA in specific situations. The null space

LDA [7], generalized ULDA [44] and orthogonal LDA [43]

deal with the small sample size problem. Heteroscedas-

tic LDA [21] and subclass discriminant analysis [47] han-

dle heteroscedastic data. Max-min distance analysis ap-

proaches [4, 46, 31, 32] tackle the class separation prob-

lem. Marginal Fisher analysis [41] only uses the neighbor-

ing samples and the samples distributed around the class

boundaries to construct the intra-class and inter-class scat-

ters. Wasserstein discriminant analysis [14] employs the

regularized Wasserstein distance to measure the distance

between the empirical probabilities of class populations.

These advances cannot be applied to observations in se-

quences directly because the observations do not satisfy

the basic i.i.d. assumption. Far less attention has been

paid to DRS. In [28], a kernel-based sufficient dimension-

ality reduction approach is proposed to improve the per-

formance of sequence labeling, where each observation in

sequences has a label. In this paper, we learn the projec-

tion to improve the performance of sequence classification

that each entire sequence is associated with a single la-

bel. In [18], a Mahalanobis distance for observations in se-

quences is learned to improve the performance of multivari-

ate sequence alignment, where the ground-truth alignments

between sequences are given. In this paper, we learn the

projection without any alignment annotations. In [23], the

embedding vectors of tree nodes are learned by minimiz-

ing a surrogate of the classification error using the nearest

prototype classifier w.r.t. the tree edit distance, where the

prototypes are selected from the training trees. In this pa-

per, we minimize the distances between training sequences

to the corresponding barycenters w.r.t. the OPW distance.

In [29, 33, 30], linear sequence discriminant analy-

sis (LSDA) and max-min inter-sequence distance analysis

(MMSDA) are proposed for DRS, respectively. LSDA and

MMSDA extract a representative sequence and a intra-class

variance matrix for each class based on the statistics of a

trained HMM. The DTW distance between the representa-

tive sequences is used as the inter-class distance. The simi-

larities for measuring the inter-class distance and intra-class

scatter are inconsistent, because the HMM-based intra-class

variance does not measure the dispersion of the DTW dis-

tances among the sequences. In this paper, we employ the

OPW distance instead of the DTW distance as the similarity

measure between sequences, and construct the intra-class s-

catter and the inter-class distance consistently w.r.t. the OP-

W distance. We extract the order-preserving Wasserstein

barycenter as the representative sequence, which is non-

parametric and has better scalability without the need of

training HMMs with massive parameters. MMSDA opti-
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mizes the max-min distance criterion, which is more suited

to tackle the class separation problem. Note that the pro-

posed method can also be extended by applying the max-

min distance criterion to the constructed inter- and intra-

class scatters. In this paper, we only compare with the DRS

methods optimizing the same Fisher criterion.

3. Our Proposed Method

3.1. Background on OPW

We first briefly review the order-preserving Wasser-

stein (OPW) distance [34, 35]. For two sequences X =
[x1, · · · ,xNx

] and Y = [y1, · · · ,yNy
] with lengths Nx

and Ny , respectively, where the dimension of features is q,

i.e., xi,yj ∈ R
q , the OPW distance is defined as:

dOPW (X,Y ) := ⟨T ∗,D⟩
s.t. T ∗= argmin

T∈U(α,β)

⟨T ,D⟩−λ1I(T )+λ2KL(T ||P ) ,

(1)

where D := [d(xi,yj)]ij ∈ R
Nx×Ny is the matrix of all

the pairwise distances between supporting points, d(·, ·) is

set to the squared Euclidean distance in this paper. T :=
[tij ]ij ∈ R

Nx×Ny is the transport matrix, ⟨·, ·⟩ is the Frobe-

nius dot product, and U(α,β) := {T ∈ R
Nx×Ny

+ |T1Ny
=

α,T T
1Nx

= β} is the feasible set of the transport T .

I(T )=
∑

i,j

tij

( i
Nx

−
j

Ny
)
2
+1

is the inverse difference moment of

the transport matrix T to encourage the local homogeneity

that large values appear near the diagonal, and KL(T ||P )
is the Kullback-Leibler divergence between T and a prior

distribution P . P is a two-dimensional distribution whose

values decrease gradually from the diagonal to both sides

following a Gaussian distribution in any transverse sections.

λ1 > 0 and λ2 > 0 are two hyper-parameters. It is assumed

that the weights of instances in the same sequence are the

same, i.e., α = ( 1
Nx

, · · · , 1
Nx

) and β = ( 1
Ny

, · · · , 1
Ny

), re-

spectively. In [34], OPW is solved by the Sinkhorn’s fixed

point algorithm with a complexity of NxNyq.

3.2. Order­preserving Wasserstein barycenter

For a sequence class with a set of training sequences,

we want to extract a single representative sequence that re-

veals the average temporal structures and general evolution

trends, which can serve as the mean sequence of a set of se-

quences similar to the mean vector of a set of vectors. Ex-

tending the averaging operation to sequences is challenging.

As the lengths of different sequences are different, it is not

plausible to perform directly averaging to the observations

at the same time step.

Recall that the mean of a set of vectors can also be

viewed as the barycenter of the vectors with regard to

the Euclidean distance. Similarly, for sequence data, the

barycenter of a set of sequences with regard to a sort of se-

quence distance can also act as the mean sequence in some

sense. We extract the barycenter with regard to the OPW

distance, which we call the order-preserving Wasserstein

barycenter.

The barycenter U = (µ,γ) consists of a sequence

of ordered supporting points and a weight sequence as-

sociating each supporting point with a probability value.

µ = [µi, i = 1, · · · , L] is the sequence of supporting points

and γ = [γi, i = 1, · · · , L] is the sequence of associated

weights. γ lies in the simplex ΘL. L is a pre-set value,

which indicates the maximum allowed number of support-

ing points of the barycenter.

Given a set of sequences Xk, k = 1, · · · , N , let Dk de-

note the matrix of all pairwise ground distances between

any µi and observations in Xk, and Tk denote the transport

between U and Xk. The optimal transport determined by

OPW is given by argW (U ,Xk), where

W (U ,Xk)= min
Tk∈U(γ,βk)

⟨Tk,Dk⟩−λ1I(Tk)+λ2KL(Tk||P ).

(2)

By assuming that these sequences are equally weighted,

the order-preserving Wasserstein barycenter is such that

U = argmin
U

N
∑

k=1

1

N
W (U ,Xk). (3)

Both the supporting points and their weights need to be

learned. However, the objective function (3) is not convex

w.r.t. them simultaneously. We employ the alternating up-

dating strategy to minimize (3). We first update the weight

sequence γ and the optimal transports Tk, k = 1, · · · , N by

fixing the supporting points. We reformulate the objective

of OPW for optimizing Tk as follows, where the deduction

is presented in the supplementary material.

⟨Tk,Dk⟩−λ1I(Tk)+λ2KL(Tk||P ) = λ2KL(Tk||Kk),
(4)

where dkij = dk(µi,x
k
j ), s

λ1

ij = λ1

( i
N

−
j

M
)
2
+1

, and Kk =

[pije
1

λ2
(s

λ1

ij
−dk

ij)]ij .

Dk, k = 1, · · · , N are fixed since µ is fixed, hence Kk

are also fixed. Problem (3) is thereby reformulated as

min
γ,Tk,k=1,··· ,N

N
∑

k=1

1
N
KL(Tk||Kk)

s.t. ∃γ ∈ ΘL,Tk1Nk
= γ, ∀k = 1, · · · , N

Tk
T
1L = [ 1

Nk
, · · · , 1

Nk
]T , k = 1, · · · , N

. (5)

By defining T = (Tk)
N
k=1 ∈ (RL×Nk

+ )N and K =

(Kk)
N
k=1 ∈ (RL×Nk

+ )N , Problem (5) is rewritten as

min
γ,T

KLN (T ||K),γ ∈ ΘL

s.t. T ∈ Φ1 ∩Φ2

, (6)
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where KLN (T ||K) :=
N
∑

k=1

1
N
KL(Tk||Kk),

Φ1 :=
{

T ∈ (RL×Nk

+ )N : Tk
T
1L = [ 1

Nk
, · · · , 1

Nk
]T , ∀k

}

,

Φ2 :=
{

T ∈ (RL×Nk

+ )N : ∃γ ∈ ΘL,Tk1Nk
= γ, ∀k

}

.

In [3], it is shown that the iterative Bregman projec-

tion [5, 2] can solve Problem (6) efficiently. Specifically,

as proved in [34], each Tk is a rescaled version of Kk with

the form of diag(κk1)Kkdiag(κk2), and the scaling vec-

tors can be updated using the Sinkhorn’s iterations:

κ
(n)
k1 ← γ(n)./Kkκ

(n)
k2 , (7)

κ
(n+1)
k2 ← [ 1

Nk
, · · · , 1

Nk
]T ./(Kk)

Tκ
(n)
k1 . (8)

As given in [3], γ(n) is the update of the weights:

γ(n) ←

N
∏

k=1

(

κ
(n)
k1 ⊙ ((Kk)

Tκ
(n)
k2 )

)
1

N

. (9)

where ⊙ is the element-wise product. The iterations con-

tinue until convergence. Given the learned weights and the

fixed supporting points, we perform OPW to obtain the up-

dates of the optimal transports Tk, for k = 1, · · · , N .

Then, we update the supporting point sequence µ with

fixed weight sequence γ and optimal transports T ∗
k , k =

1, · · · , N . In Eq. (2), only the first term evolves µ. By

viewing the sequences µ and Xk as matrices, we have

⟨T ∗
k ,Dk⟩ = diag(µTµ)Tγ − 2

⟨

T ∗
k ,µ

TXk

⟩

+ diag(XT
k Xk)

T [ 1
Nk

, · · · , 1
Nk

]T
.

We follow [9] to optimize the local quadratic ap-

proximation of the following function: diag(µTµ)Tγ −

2
⟨

T ∗
k ,µ

TXk

⟩

=
∥

∥

∥
µdiag(γ

1

2 )−XkT
∗
k
T diag(γ−

1

2 )
∥

∥

∥

2

−
∥

∥

∥
XkT

∗
k
T diag(γ−

1

2 )
∥

∥

∥

2

. This leads to the Newton update:

µ←XkT
∗
k
T diag(γ−1). (10)

For all N training sequences, µ is updated by

µ← (1− ξ)µ+ ξ(
N
∑

k=1

XkT
∗
k
T )diag(γ−1), (11)

where ξ ∈ [0, 1] is a pre-set value.

We cycle the two alternative procedures until conver-

gence or a maximum number of steps is reached. It was

shown in [2, 3] that the iterative Bregman projection for up-

dating γ converges linearly. The convergence rate of the

Newton’s method for updating µ is quadratic. It can be

difficult to obtain the global convergence rate of the over-

all alternating optimization. In our experiments, it con-

verges in about 10 iterations. The complexity per iteration

is O(NTLq), where T is the average length of sequences.

3.3. Covariance

For a set of sequences, the barycenter reflects the aver-

age evolution. The dispersion of the sequences around the

barycenter can be straightforwardly measured by accumu-

lating the OPW distances:

dw =
N
∑

k=1

dOPW (U ,Xk) =
N
∑

k=1

⟨T ∗
k ,Dk⟩,

where the optimal transports T ∗
k between U and Xk, for

k = 1, · · · , N , are the by-products when determining the

barycenter, so no extra calculations are needed.

To measure the covariance over different dimensions, we

define a covariance matrix Γ so that tr(Γ)= dw. Γ can be

constructed by accumulating the weighted outer products

between any µi and observations in Xk as follows:

Γ =
N
∑

k=1

L
∑

i=1

Nk
∑

j=1

tkij
∗
(µi − xk

j )(µi − xk
j )

T . (12)

We can find that Γ captures all local relations between

elements of the barycenter and the observations in all se-

quences. All element-observation pairs contribute to the to-

tal covariance with different weights. The weight of a pair

(µi,x
k
j ) is actually the corresponding element tkij

∗
of the

learned transport T ∗
k , so it reflects the probability of match-

ing the pair. In this way, the local pairwise relations or joint

probabilities are encoded. The weights are larger for the

pairs that have high joint probabilities, since the matched

pairs probably correspond to the same temporal structure.

The differences between pairs with low joint probabilities

are also incorporated, but with smaller weights, to consid-

er soft alignments and compensate possible missing match-

es. As a result, the constructed Γ better reflects the spatial-

temporal variances in different dimensions.

3.4. Learning the projection

Our goal is to learn a transformation that projects the ob-

servations in sequences onto a low-dimensional subspace,

in which the sequences from different classes get better sep-

arated. We employ the Fisher criterion to maximize the sep-

arability, i.e., we maximize the ratio of the inter-sequence-

class distance to the intra-sequence-class dispersion.

For each sequence class ωc, c = 1, · · · , C, we extract the

order-preserving Wasserstein barycenter U c and the covari-

ance matrix Γ
c from the training sequences of the class. C

is the total number of classes. We define the intra-sequence-

class scatter as the weighted sum of covariances:

Γw =

C
∑

c=1

pcΓc, (13)

where pc is the estimated prior probability of class ωc.
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We measure the distance between two classes ωc and

ωc′ by the OPW distance between the corresponding order-

preserving Wasserstein barycenters.

db(ωc, ωc′) = dOPW (U c,U c′) = ⟨T ∗
cc′ ,Dcc′⟩, (14)

where Dcc′ is the matrix of all pairwise distance between

µc
i and µc′

j , and T ∗
cc′ is the optimal OPW transport between

the two barycenters. The corresponding between-class scat-

ter Γb(cc′) is the weighted sum of outer products between

elements of the two barycenters, so that db(ωc, ωc′) =
tr(Γb(cc′)):

Γb(cc′) =
L
∑

i=1

L
∑

j=1

tcc
′

ij

∗

(µc
i − µc′

j )(µ
c
i − µc′

j )
T . (15)

We define the overall inter-sequence-class scatter as the

weighted sum of all pairwise between-class scatters:

Γb =

C−1
∑

c=1

C
∑

c′=c+1

pcpc
′

Γb(cc′). (16)

We can observe again that all the differences between el-

ements in all barycenters contribute to the overall inter-class

scatter according to different weights. The weight tcc
′

ij

∗

of

a pair (µc
i ,µ

c′

j ) encodes the local relations of the two ele-

ments and indicates their joint probability. Γb concentrates

more on the differences between the pairs with large joint

probabilities. Such differences reflect the essential distinc-

tions of two classes, because the matched pairs represent

the homologous temporal structures and thus are distinctive

for discriminating the two classes. Different from the align-

ments by DTW, where the weights are 1 for a small portion

of aligned pairs and 0 for other pairs, the weights by OPW

are soft probability values and hence Γb also incorporates

the differences between the pairs with smaller weights. This

compromises more information and is more robust to incor-

rect or ambiguous alignments caused by noises.

When both the features in sequences and their dimen-

sions are not linearly related, the ranks of Γw and Γb are

min(N t, q) and min(CL, q), respectively, where N t is the

number of all features in all training sequences. When

N t ≥ q (CL ≥ q), Γw (Γb) is full-rank. In extreme cases

when there are too few training sequences so that N t < q,

we can use PCA to remove the null space of Γw or add a

identity matrix multiplied by a small scalar to Γw.

The objective of learning the projection W using the

Fisher criterion is formulated as the ratio-trace problem:

max
W

tr((W T
ΓwW )−1W T

ΓbW ). (17)

The optimal W
∗ of Problem (17) is the matrix whose

columns are the eigenvectors of Γ−1
w Γb w.r.t. the d′ largest

eigenvalues, where d′ is the reduced dimensionality. The

proposed DRS method is called Order-preserving Wasser-

stein Discriminant Analysis (OWDA).

3.5. Complexity

Let Na and T denote the average number of sequences

per class and the average length of sequences, respective-

ly. The complexities for calculating the barycenters for

all C classes, calculating the inter-class and intra-class s-

catters, and solving (17) are O(CNaTLq), O(C2L2q2),
O(CNaLTq

2), and O(q3), respectively. The overall com-

plexity is O(C2L2q2) + O(CNaLTq
2) + O(q3). It scales

linearly with the number of samples, but cubically with

the dimension of features q due to the eigen-decomposition

(17). We simultaneously diagonalize the intra-class and

inter-class scatters [43] to solve (17). Any advanced meth-

ods for large-scale eigen-decomposition can be applied to

accelerate our method.

4. Experiments

We evaluate the proposed OWDA method on three 3D-

action datasets. Evaluations on the influence of hyper-

parameters are presented in the supplementary file.

4.1. Results on the Action3D dataset

The MSR Sports Action3D dataset [19, 37] contains

557 depth sequences captured by Kinect camera from 20

sports actions. Ten persons performed each action for two

or three times. The skeleton joint positions of humans are

also available in this dataset.

We extract a feature vector from each frame as the ob-

servation of the frame. In this way, we represent each video

by a sequence of observations. We employ the pairwise-

joint-angle-based features provided by the authors of [37]

as the frame-wise observation, which are the relative angles

of all the 3D joints w.r.t. other joints. The dimensionality

of the observation is 192. In [37, 38], the authors split the

dataset into a training set and a test set, where the training

set includes the sequences performed by about half of the

persons and the test set includes the rest. We follow this

experimental setup and report our results on the test set.

We employ the proposed OWDA method to project the

observations in sequences onto subspaces with different di-

mensions. In the learned subspaces, we employ two se-

quence classifiers to classify the transformed sequences: the

SVM classifier and the nearest neighbor (NN) classifier. For

the SVM classifier, we first encode each sequence of obser-

vations into a fixed-dimensional vector by the unsupervised

rank pooling [12]. Rank pooling learns two linear functions

to rank the forward and reverse timing orders of the obser-

vations by the support vector regression, respectively. The

parameters of the two linear functions are concatenated to

form the pooling vector. Then, we train linear SVMs by

taking these resulting vectors as input. We determine the

hyper-parameter C of the linear SVMs by cross-validation.

At the testing phase, we encode the test sequence of obser-
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Figure 2. (a) Accuracies with the SVM classifier (b) MAPs with the SVM classifier (c) Accuracies with the NN classifier and (d) MAPs

with the NN classifier as functions of the dimensionality of the subspace on the MSR Action3D dataset.

vations into a vector by rank pooling, and then employ the

leaned SVMs to classify the encoded vector.

For the NN classifier, we employ the OPW distance as

the dissimilarity measure between two sequences. Specif-

ically, for a test sequence, we calculate its OPW distance

to all training sequences. We predict its class label as the

label of the training sequence which has the smallest OPW

distance with it among all training sequences.

We compare the proposed OWDA with other dimension-

ality reduction methods for sequences. OWDA employs the

Fisher criterion. As discussed in Section 2, different cri-

teria are generally suited for different cases. In addition,

OWDA can also be extended by employing other criteria.

Therefore, to obtain a fair comparison, we only compare

with those methods based on Fisher criterion, including L-

DA, kernel LDA (k-LDA), and LSDA. For LSDA, we use

the same hyper-parameters as in [29, 33]. For OWDA, the

hyper-parameter L is fixed to 8 in all our experiments.

LDA and kLDA are based on the i.i.d. assumption. To

apply them to sequence data, we view the observations in

sequences as independent samples with the same class la-

bel. Generally, a single sequence contains a number of ob-

servations, using all observations in all sequences as train-

ing samples results in a large-scale kernel matrix. It is im-

practicable to perform kLDA with such kernel due to the

huge space and computational overhead. Therefore, we on-

ly sample less than 5 observations per sequence for training.

We employ the drtoolbox [36] to implement LDA and kL-

DA. In addition, we also evaluate the performances using

both classifiers in the original space.

We adopt the accuracy and MAP (mean average preci-

sion) as performance measures. For the SVM classifier, we

train a multi-class SVM to evaluate the classification accu-

racy. We train a binary SVM for each class and use the

scores to rank all training encoded vectors to evaluate the

MAP. Additional evaluations by using the multi-class preci-

sion and recall as performance measures with this classifier

are presented in the supplementary file. For the NN classi-

fier, to evaluate the MAP, we view each test sequence as a

query to rank all training sequences with the OPW distance.

The results of different DRS methods with different re-

duced dimensions are shown in Fig. 2. We can observe that

the proposed OWDA outperforms other DRS methods by a

significant margin with both classifiers. Especially when a

few dimensions (e.g., less than 15) are preserved, OWDA

outperforms the second LSDA by a margin of about 10%

for both accuracy and MAP. Compared with the original

192-dimensional observations, OWDA achieves better ac-

curacy and comparable MAP using only 30 dimensions for

the SVM classifier, and achieves comparable accuracy and

MAP using only 10 dimensions for the NN classifier.

4.2. Results on the Activity3D dataset

The MSR Daily Activity3D dataset [37] contains 320

daily activity sequences from 16 activity classes. The se-

quences were captured by a Kinect device. Ten subjects

performed each activity in two poses.

On this dataset, we employ the pairwise-joint-position-

based features provided by the authors of [37, 38] as the

frame-wise observations, whose dimensionality is 390. We

follow the split of the dataset as in [37, 38] again and report

our results on the test set. We compare OWDA to LDA

and LSDA. Other experimental settings remain the same as

those on the MSR Action3D dataset.

Fig. 3 depicts the performances of different DRS meth-

ods as functions of the reduced dimension by both classifier-

s. For the SVM classifier, classifying the original sequences

directly without any DRS methods performs best, but the

proposed OWDA performs better than other DRS methods.

Especially, the proposed OWDA using only 25 dimensions

achieves comparable MAP with the original sequences. S-

ince the activities in this dataset show larger variations than

the actions in the Action3D dataset, the sequences in the

same class may be spread in different clusters. E.g., differ-

ent persons may perform the same action “call cellphone”

using different hands or poses. A single barycenter for each

class is unable to distinguish such situations. Therefore,

OWDA performs inferior to the original features. Adding

the number of barycenters per class may further increase

the performances of OWDA.

For the NN classifier, other DRS methods obtain better

accuracies than OWDA, but OWDA achieves much better

MAP than other methods. For a test sequence, the NN

classifier only employs its nearest training sequence when
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calculating the accuracy, but ranks all training sequences

according to the OPW distances w.r.t. it when calculat-

ing the MAP. OWDA minimizes the overall dispersion for

sequence classes and maximizes the overall separability a-

mong classes. This makes most sequences from different

classes more different, but does not pay special attention to

the margins among classes. For a test sequence, the nearest

training sequence may not belong to the same class due to

noises or variances, but generally, most training sequences

from the same class will be ranked in front of those from

different classes.

4.3. Results on the ChaLearn dataset

The ChaLearn Gesture Recognition dataset [11, 10]

contains 955 Italian gesture sequences captured by Kinect

camera from 20 different Italian gestures. Because we focus

on individual sequence classification rather than sequence

detection or segmentation, we follow [42, 24, 12] to per-

form experiments on the segmented sequences given by the

ground-truth segments. Each segmented sequence contain-

s only one gesture instance. 27 persons performed these

gestures. Other annotations of this dataset include the fore-

ground segmentation and joint skeletons.

On this dataset, we employ the histogram-of-joint-

positions-based frame-wise features provided by the au-

thors of [12]. Specifically, for each frame, the relative lo-

cations of body joints are quantized w.r.t. a pre-clustered

codebook, and the histogram of the quantized codeword-

s serves as the feature with a dimensionality of 100. This

dataset includes training set, validation set, and test set. Fol-

lowing [42, 24, 12], we learn the projections and train the

classifiers on the training set, and report the results on the

validation set. Other experimental settings remain the same

as those on the MSR Action3D dataset.

Fig. 4 presents the results of different DRS methods as

functions of the reduced dimension by both classifiers. For

the SVM classifier, OWDA outperforms other methods by

a margin of about 5% on most reduced dimensions. OWDA

is the only DRS method that is able to improve the origi-

nal features. Moreover, OWDA achieves this by preserving

only 25 dimensions. This indicates that OWDA enhances

the temporal separability and discards noises successfully.

The performances of LDA and kLDA are far below those

of other methods. The reason is that the observations in se-

quences are not independent. Performing LDA and kLDA

forcibly by viewing them as independent samples not only

aggravates the within-class ambiguity, but also may break

their temporal relations. Moreover, LDA and kLDA can p-

reserve C − 1 = 19 dimensions at most. It is difficult to

separate sequences from different classes with such few di-

mensions. In contrast, since the barycenter of each class

has L = 8 supporting points, OWDA is able to preserve

LC − 1 = 159 dimensions, if d > 159.

Method Precision Recall F-score

Wu et al. [40] 0.599 0.593 0.596

Pfister et al. [24] 0.612 0.623 0.617

Fernando et al. [13] 0.753 0.751 0.752

Cherian et al. [8] 0.753 0.752 0.751

LSDA+SVM [33] 0.768 0.767 0.767

OWDA+SVM 0.773 0.773 0.772

Table 1. Comparison with other methods on the ChaLearn dataset.

For the NN classifier, both OWDA and LSDA improve

the original features greatly. Compared with LSDA, OW-

DA achieves comparable accuracy and much higher MAP.

Specifically, OWDA outperforms the original features by a

margin of 20%. The MAPs of OWDA are 5% higher than

those of LSDA on almost all dimensions. Comparisons us-

ing other performance measures on the three datasets are p-

resented in the supplementary file, where similar trends can

be observed.

4.4. Training time

For OWDA, in most cases, the calculation of the

barycenter converges in about 10 iterations. The procedures

after learning the barycenters are closed-form calculations.

Therefore, the practical training time is not too long. On

the MSR Action3D dataset, the MSR Activity3D dataset,

and the Chalearn dataset, the training times of OWDA are

43.1753, 265.7691, 385.8162 (sec), respectively.

4.5. Comparison with state­of­the­art methods

Our goal is not to design an end-to-end sequence clas-

sification method, but to develop a DRS method that pro-

duces low-dimensional discriminative temporal representa-

tions. Our method can serve as a ubiquitous component in

different classification pipelines to improve the original rep-

resentations and benefit the subsequent classifiers. For ex-

ample, recurrent neural networks (RNNs) are seldom used

for feature learning, but often as classifiers by taking hand-

crafted or CNN-learned frame-wide features as input. Our

method can be applied to these features before they are fed

into RNNs. In this way, RNNs can estimate fewer parame-

ters and better capture the temporal dependencies.

On the ChaLearn dataset, we have shown that our

method outperforms other DRS methods and improves d-

ifferent sequence classification methods. We compare our

results by using the frame-wide features in [12] and the

SVM-based classifier with some other methods. Multi-class

precision, recall, and F-score are used as performance mea-

sures as in [40, 24, 13, 8, 33]. Comparisons are shown in

Tab. 1. Our method followed by a relatively simple SVM

classifier with rank pooling outperforms other methods.

On the MSR Activity3D dataset, covariance represen-

tations and kernel-SVM based methods such as Ker-RP-
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Figure 3. (a) Accuracies with the SVM classifier (b) MAPs with the SVM classifier (c) Accuracies with the NN classifier and (d) MAPs

with the NN classifier as functions of the dimensionality of the subspace on the MSR Daily Activity3D dataset.
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Figure 4. (a) Accuracies with the SVM classifier (b) MAPs with the SVM classifier (c) Accuracies with the NN classifier and (d) MAPs

with the NN classifier as functions of the dimensionality of the subspace on the Chalearn Gesture dataset.

Method Accuracy

Actionlet Ensemble [37] 85.8%

Moving Pose [45] 73.8%

COV-JH-SVM [15] 75.5%

Ker-RP-POL [39] 96.9%

Ker-RP-RBF [39] 96.3%

Kernelized-COV [6] 96.3%

LRTS [17] 80.6%

Qiao et al. [25] 75.0%

Baradel et al. [1] 90.0%

Luo et al. [22] 86.9%

Ji et al. [16] 81.3%

DSSCA SSLM [27] 97.5%

MDMTL [20] 93.8%

OWDA+Kernelized-COV 98.1%

Table 2. Comparison with state-of-the-art methods on the MSR

Activity3D dataset.

POL [39] and Kernelized-COV [6] achieve superior results.

Kernelized-COV employs the Kernelized covariance of all

frame-wide features of a sequence as the representation of

the sequence. Our proposed OWDA can be applied before

Kernelized-COV to enhance the temporal representations.

Specifically, we employ the frame-wide features provided

in [39], which are based on the velocity and acceleration of

the joint positions [45] and have a dimensionality of 120.

We perform the proposed OWDA to reduce the dimension

to 80 and then employ Kernelized-COV for classification.

As shown in Tab. 2, the result obtained in this way outper-

forms the state-of-the-art results on this dataset.

5. Conclusion

In this paper, we have presented a linear DRS method,

i.e., OWDA, to map the non-independent observations in

sequences onto a low-dimensional subspace, so that the en-

tire sequences from different classes are better discriminat-

ed with the OPW distance. To manipulate the structured se-

quences with various lengths, we learn the OPW barycenter

of the sequence samples from a class to represent the av-

erage temporal structures and evolutions. We construct the

covariance of the class in such a way that the trace of the

covariance measures the variability of the OPW distances

between the sequence samples and the barycenter. Simi-

larly, we construct the pair-wise inter-class scatter so that

the trance of the scatter measures the OPW distance be-

tween the corresponding barycenters of the two classes. We

show that the intra- and inter-class scatters are actually the

weighted sums of all the pairwise out-products between ob-

servations in sequences or elements of barycenters. There-

fore, all the local relationships are learned and incorporated.

Experimental results on the three 3D action datasets demon-

strate the effectiveness of the proposed OWDA.
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