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Abstract. Person re-identification (ReID) has attracted tremendous at-
tention and achieved significant progress on holistic data where the whole
body of a pedestrian is completely presented. However, in a more realis-
tic scenario where pedestrians are partially occluded, the discriminative
ability of the existing ReID methods is severely limited since the visual
information of the pedestrians becomes noisy and unreliable. To alle-
viate this issue, current solutions mostly pay more attention to visible
body parts for extracting fine-grained features. Nevertheless, different
occluded parts on different images of the same pedestrian always result
in inaccuracy matching. In this paper, we propose an Uncover the Body
Network (UBN) which exhibits the ability to remove the occlusion and
attempt to restore the full body of a pedestrian. The proposed UBN can
alleviate the noise brought by occlusions and extract more robust feature
representations. To achieve this, we propose a MIM (Masked Image Mod-
eling) based method for its powerful representation of partial images to
the whole. Instead of randomly masking the images, we propose a Mask
Prediction Module (MPM) to readily locate the occluded patches, and
an occlusion-guided masking strategy is adopted to facilitate the learn-
ing. Extensive experimental results on both the occluded and holistic
ReID benchmarks have demonstrated the superiority of UBN against
the state-of-the-art approaches.

Keywords: Occluded Person Re-identification · Masked Image Model-
ing · Retrieval.

1 Introduction

Person Re-Identification (ReID) has played an important role in many practical
computer vision tasks such as video surveillance [1], forensic tracking [2], and
so on. Over the past years, most of ReID methods [3–6] concentrated on pro-
cessing holistic data where the whole body of a pedestrian is completely visible.
However, in a more realistic scenario where pedestrians are partially occluded
by various obstacles, the discriminative ability of the existing ReID methods is
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severely limited since the visual information of the pedestrians becomes noisy
and unreliable, leading to deteriorated performance for occluded ReID [7, 8].

To mitigate the influence of occlusions, various occluded ReID methods [8–
11], have been proposed which can be roughly categorized into two groups:
keypoint-based methods and feature pyramid-based ones. The former group [9,
11] focuses on extracting informative features from the visible keypoint parts es-
timated by off-the-shelf pose estimation models. The latter group [8, 10] aims to
extract multi-scale features from both the query and gallery images to alleviate
the influence of occlusions. However, both groups rely on the visible person re-
gion matching across query and gallery images, which is sensitive to the occlusion
distribution between different images.

In this paper, by thoroughly exploring the visible parts of a pedestrian im-
age, we propose to suppress the adverse effects of occlusions by uncovering the
occluded parts. Motivated by the recent Masked Image Modeling (MIM) re-
search [12], deep networks have exhibited the superior ability to recover factual
visual information only based on the remaining visible parts, even if the propor-
tion of the visible parts is small. Therefore, we propose an Uncover the Body
Network (UBN) which exhibits the ability to remove the occlusion and attempt
to restore the full body of a pedestrian. A novel Occlusion-aware Mask Predic-
tion Module (MPM) and a Masked Image Reconstruction Module (MIR) are
designed accordingly where the MPM can automatically generate mask maps to
determine the dropping patches with respect to the occlusion obstacles. More-
over, the proposed MPM utilizes learnable embedding to replace masked patches
for mask map generation. As for MIR, it takes the aforementioned masked im-
ages as inputs to reconstruct the holistic person images.

Our proposed UBN can readily mitigate the above issues in existing occluded
ReID methods. On the one hand, our UBN can benefit the keypoint-based ap-
proaches by recovering the occluded parts, which will enhance the ability of pose
estimation models and enrich the keypoints for discriminative feature extraction.
On the other hand, the proposed UBN will benefit the feature pyramid-based
methods by eliminating the adverse influence of occlusion obstacles which can en-
hance the discriminative ability of the obtained features via recovering reasonable
appearance information. Extensive experimental results have demonstrated that
our UBN achieves state-of-the-art performance on various ReID benchmarks,
exceeding the latest baselines by a large margin. To sum up, our contributions
are three-fold:

– A novel occluded ReID model named Uncover the Body Network (UBN) is
proposed which consists of a Mask Prediction Module (MPM) and a Masked
Image Reconstruction Module (MIR). Thus, the MPM generates mask maps
to automatically decide the occluded parts in images for masking and the
MIR takes the masked images as inputs to reconstruct reasonable holistic
person images.

– To facilitate MPM and MIR learning, four mask supervision strategies are
readily designed. Both the subjective and objective evaluation results demon-
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strate that all strategies could simultaneously promote the ReID perfor-
mance and the mask prediction results.

– The conducted extensive experimental experiments on various ReID bench-
marks have demonstrated that our UBN achieves state-of-the-art perfor-
mance against the latest baselines by a large margin.

2 Related Work

2.1 Holistic Person ReID

Person ReID aims to identify the same pedestrian captured by different cam-
eras at different locations and different time. Most existing ReID methods [4,
13, 6] focus on holistic data where the whole body of a pedestrian is clearly pre-
sented. Although performs well on holistic data, they suffer serious performance
degradation when they are applied to partial and occluded person images, which
indeed appear frequently in a more realistic application scenario. Different from
them, our proposed UBN can not only tackle the holistic ReID task, but also
makes a breakthrough in the scenario with heavy occlusions.

2.2 Occluded Person ReID

Existing occluded ReID methods either utilize human pose [9, 11] or extract
the feature pyramid [8, 10] to facilitate part-level person matching. However,
these methods can not accurately predict the occluded body parts which is not
coherent with how humans tackle occlusion scenarios. and most of them are
sensitive to fine-grained extra cues and are not robust to variation of occlusions.
Compared with the aforementioned methods, In contrast, our proposed UBN
manages to remove the occlusion obstacles and uncover the full body. Therefore,
a more robust and discriminative feature representation can be obtained.

2.3 Masked Image Modeling

Recently, Masked Image Modeling (MIM) [14–18, 12] becomes an effective self-
supervised pre-training manner to provide initial weights with strong represen-
tation capacity for downstream tasks [15]. The recent works MAE [17] and Sim-
MIM [12] have demonstrated that with partial visible patches, an image with
complete structural information could be successfully reconstructed. This mo-
tivates us that the occluded body parts of a pedestrian could be reconstructed
based on the remaining visible parts, which could lead to a complete feature rep-
resentation for ReID. However, existing MIM approaches aim to recover all the
patches in the original images, which means that the occluded patches will keep
being occluded in the reconstructed images. Therefore, it’s vital to redesign the
pipeline that guides the network to reconstruct the human body preferentially.

3 Methodology

Given a query set Q = {q1, q2, ..., qn} and a galley set G = {g1, g2, ..., gm}, the
goal of ReID is to compute the match scores of each image in Q and G. For the
sake of convenience, we reasonably assume that the width and height of a query
or galley image is W and H respectively.
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3.1 Algorithm Overview

The overall pipeline of our proposed UBN is demonstrated in Figure 1. Our
model mainly contains three crucial parts including an Occlusion-aware Mask
Prediction Module (MPM), a Masked Image Reconstruction Module (MIR),
and a TransReID-based feature extractor. More specifically, MPM processes the
original occluded images by generating the occlusion-aware mask maps. Then,
MIR aims to recover the complete visual appearance according to MPM’s in-
put images and predicted masks. Finally, a TransReID-based feature extractor
module is adopted to leverage the recovered contextual information from MIR
to facilitate feature learning.

Feature Extractor Module

Mask Prediction Module 

ID Loss

Triplet Loss

Masked Token

Masked Image Reconstruction Module 

...

...

...

1-

Patch to Token Token to Patch Transformer Layer

Mask Loss

Reconstruction

Loss

Side Information Embedding

Fig. 1. The overall architecture of our proposed Uncover the Body Network (UBN).

3.2 MPM: Occlusion-Aware Mask Prediction Module

Recall existing MIM methods [17, 12, 16], all of them randomly mask image
patches or pixels and then force the model to reconstruct the masked areas.
In occluded ReID, we expect to leverage the visible person parts to predict the
occluded body parts. To do so, we propose a Mask Prediction Module (MPM) to
learn the occlusion-aware mask maps according to the global context. As illus-
trated in Figure 1, the proposed MPM consists of a patch-to-token layer along
with multiple transformer layers [19, 3] in which the ultimate transformer will
generate token-level mask predictions. The patch-to-token operation follows the
standard ViT [19] that divides the given image into non-overlapping patches
and then maps each patch into a token vector representation, after which the
positional information would be added.

3.3 MIR: Masked Image Reconstruction Module

Based on the predicted occlusion-aware mask maps from MPM, our UBN will
further recover the occluded patches to complete the holistic person images.
Therefore, a Masked Image Reconstruction Module (MIR) is designed for holistic
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Fig. 2. An example of reconstruction target and MIR mask target generation. The
image is from the holistic PRID dataset. The teacher model is a pre-trained instance
segmentation model. Person mask is the biggest person mask in the image. Person
texture is extracted from the image according to the person mask. Augmented image
is generated by pasting a external object and it serves as the input image of MPM and
MIR. The Augment mask is the mask map of pasting area. The background mask is the
opposite of person mask. Non-person mask is the pixel-wise binary sum of the Augment
mask and background mask. MIR mask target is sub-sampled from Non-person mask
in order to fit the resolution of tokens.

person generation which mainly contains three components: MIR Input, MIR
Encoder and MIR Head.

MIR Input: Given a token ti generated from the original image, we generate
a MIM input token t′i by

t′i = Maski ∗ tm + (1−Maski) ∗ ti, (1)

where Maski is the Mask score of ith token and tm is the learnable mask token.
When Maski is 0 or 1, Equation (1) is equivalent to the mask operation of
SimMIM and MaskFeat in which the original token information is totally kept
or dropped. When Maski ∈ (0, 1), it denotes ith token partly contribute to
person construction.

MIR Encoder Similar to MAE, MaskFeat and SimMIM, we also use trans-
former layers as the basic module of feature encoder. The transformer parameters
follow the default setting of ViT-B [20, 19].

MIR Head We use a simple linear layer as MIR Head to map the tokens
from the encoder into RGB pixels.

3.4 FEM: TransReID-based Feature Extractor Module

Once the occluded person images are recovered by the proposed MPM and MIR
modules, a TransReID-based [3] Feature Extractor Module (FEM) is utilized to
obtain the final feature representations for the given images. FEM is an efficient
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and effective backbone that adapts the ViT to the ReID task to construct the
data stream from the original occluded person images to the final embedding.
As shown in Figure 1. the proposed FEM firstly utilizes a patch-to-token layer
to map the original image into several tokens Treid. Then the MIR token and
Side Information Embedding (SIE) are added to Treid to supplement more in-
formation such as holistic human body and camera IDs. The addition weights
of MIR token and SIE are λmir and λsie respectively. Moreover, the fused token
is fed to l transformer layers which will eventually extract a discriminative and
robust feature representation for cross-image similarity calculation. Therefore,
based on FEM, our proposed method can readily leverage the holistic informa-
tion recovered by MIR to supplement occluded information.

3.5 Model Training

The MPM and MIR together formulate a complete pipeline for recovering the
helpful information of the occluded parts. Therefore, the key issue here is how to
guide MPM to identify which token should be dropped and meanwhile promote
MIR to generate a holistic person image without occlusions. To tackle the above
issue, both the MPM and MIM are pre-trained using holistic person images and
then the whole model with all the three proposed modules will be jointly trained
to accomplish effective Person ReID.

MPM and MIR Pre-training Given an input holistic person image x,
our method automatically generates an occluded image xa by introducing an
external object to x as the occlusion obstacle. To guide the model to reconstruct a
holistic person without occlusions, we adopt an instance segmentation model, i.e.
CBNetV2 [21], as the teacher model to generate person mask Mp = RH×W . We
useMp to get the visible person areas and adopt these areas as the reconstruction
target. Given original image x and reconstructed image x′, the Reconstruction
loss is calculated by:

LR = ||(x′ − x) ∗Mp||. (2)

To accomplish MPM learning, we provide four kinds of supervision strategies:
1) Non-person supervision. Given person mask Mp, the background mask

Mbk can be calculated simply by Mbk = 1 − Mp. Besides, after implementing
occlusion augmentation, the augmentation mask Maug could also be obtained.
Therefore, the non-person mask Mnon−p could be calculated by Mnon−p = Mp+
Maug. The Non-person supervision takes Mnon−p resized to H/K ×W/K as the
target, where K is the patch size of each token. The core idea of this supervision
is to drop the patches not containing the person and keep the patches containing
the person.

2) Occlusion supervision. The occlusion mask Mocc is calculated by Mocc =
Mp × Maug. The Occlusion supervision takes Mocc resized to H/K ×W/K as
the target and the key idea is to drop the occluded patches.

3) All-drop supervision. In this setting, the target is a mask map with each
element set to 1, which means that no image information should be kept. How-
ever, since MIR needs vital image patches, such as those containing human body
parts, to reconstruct a holistic person, it will drive MPM to output a lower mask
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score in those areas. Eventually, the learned mask map will have larger values in
occluded and background patches, and smaller values in visible body patches.

4) All-keep supervision. This setting is the opposite strategy of 3). The target
is a mask map with each element set to 0, which means that all image information
should be kept. In such condition, MIR will drive MPM to drop the patches
harmful to holistic person reconstruction. Eventually, the learned mask map
will have bigger values at occlusion patches and smaller valves at the visible
body patches and background patches.

Figure 2 illustrates an example of the reconstruction target and target gener-
ation pipeline for Non-person supervision. For the above four supervision strate-
gies, we adopt Binary Cross Entropy Loss to calculate Mask Loss Lm. The
performance of each strategy is discussed in the Ablation Studies.

The overall loss of MPM and MIR Pre-training is calculated by:

Lpre = LR + λ1Lm, (3)

where λ1 is super parameter to balance the loss weight of MPM and MIR. In
our experiments, λ1 is set to 1 for strategy 1) and 2), and for strategy 3) and
4), λ1 is set to 0.001.

Joint Training The Joint Training procedure aims to train a RRID model
robust to occlusion. Given a wild occluded image, as illustrated in Figure 1 we
pass the image through MPM, MIR, and FEM successively. For supervision, we
only adopt ID loss and triplet loss at the last layer of the FEM. The ID loss
refers to cross entropy loss, which calculated by

LID = −yi log

(
exp (Wifi)∑IDs

j=1 exp (Wjfj)

)
, (4)

where y is the ground truth, f is the extracted feature, W is a linear projection
matrix.
The triplet loss is soft-margin loss which minimizes the gap between positive
samples and maximizes the gap between positive and negative samples. Func-
tionally, the loss can be presented as:

LTri = log(1 + e∥fa−fp∥2
2−∥fa−fn∥2

2) (5)

L = LID + LTri, (6)

where ⟨a,p,n⟩ is a triplet set ⟨anchor, positive sample, negative sample⟩.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets We conduct all experiments on four ReID datasets, including two
holistic datastes Market1501 [22] and DukeMTMC-reID [23] as well as two oc-
cluded datasets Occluded-DukeMTMC [9] and Occluded-REID [7].



8 K. Xu et al.

Evaluation Metrics To perform a fair comparison with existing methods, all
experiments follow the common evaluation settings in person ReID methods.
The Cumulative Matching Characteristic (CMC) and mean Average Precision
(mAP) are adopted to evaluate the performance. All experiments are performed
in the single query setting.

4.2 Implementation

In our experiments, images are resized to 256 × 128. During MPM and MR
pre-training, we collect the images from three holistic datasets: Market1501,
DukeMTMC-reID and MSMT17. The basic pre-training augmentation includes
Horizontal-Flipping, Random-Crop, Random-Rotation, and Colorjitter. Besides,
we also adopt occlusion augmentation which randomly pasted external objects
on the image. The external objects are extracted from MS-COCO valset [24].
We use four Nvidia 3090 GPU to pre-train MPM and MIR for 400 epochs.

During Person ReID training, we first augment the training images by ran-
dom horizontal flipping, padding, random cropping and random erasing. The
batch size is set to 64 and each one concludes 16 identities. And we train the
whole network for 160 epochs using the SGD optimizer with a momentum of 0.9
and weight decay of 1e-4. And the initial learning rate is 0.008 with cosine learn-
ing rate decay. We embed the MIR-feature into the TransReID baseline using
the token-level feature fusion approach and the weight of SIE(λs) and the weight
of MIR token embedding (λm) are respectively set to 3.0 and 1.0. Furthermore,
PRID training experiments are conducted on one Nvidia 3090 GPU.

Table 1. Performance comparison with state-of-the-art methods on four datasets,
including Occluded-DukeMTMC (O-Duke), Occluded-REID (O-REID), Market1501
and DukeMTMC-reID (DukeMTMC).

O-Duke O-REID Market1501 DukeMTMC
Method mAP R1 mAP R1 mAP R1 mAP R1

PCB [25] 33.7 42.6 38.9 41.3 77.4 92.3 66.1 81.8
RE [26] 30.0 40.5 - - 71.3 87.1 62.4 79.3
FD-GAN [27] - 40.8 - - 77.7 90.5 64.5 80.0
DSR [28] 30.4 40.8 62.8 72.8 75.6 91.3 68.7 82.4
SFR [29] 32.0 42.3 - - 81.0 93.0 71.2 84.8
FRR [30] - - 68.0 78.3 86.6 95.4 78.4 88.6
ISP [31] 52.3 62.8 - - 88.6 95.3 80.0 89.6
PGFA [9] 37.3 51.4 - - 76.8 91.2 65.5 82.6
HOReID [10] 43.8 55.1 70.2 80.3 84.9 94.2 75.6 86.9
OAMN [8] 46.1 62.6 - - 79.8 92.3 72.6 86.3
PAT [32] 53.6 64.5 72.1 81.6 88.0 95.4 78.2 88.8
TransReID [3] 55.7 64.2 67.3 70.2 88.2 95.0 80.6 89.6

Ours(UBN) 57.3 65.2 74.8 79.9 88.6 95.5 81.1 90.2

4.3 Comparison with State-of-the-art Methods

As shown in Table 1, we compare our method with the state-of-the-art ap-
proaches on four datasets, including Market-1501, DukeMTMC-reID, Occluded-
DukeMTMC, and Occlude-REID. The results demonstrate we can achieve ex-
cellent results on both occluded and holistic datasets.
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On Occluded Datasets On the challenging Occluded-DukeMTMC, UBN achieves
state-of-the-art performance with an mAP of 57.3% and R1 of 65.2%. This per-
formance surpasses classical hand-crafted methods such as PCB [25] and FD-
GAN [27], which use keypoints of pedestrians, by 23.6% and 22.6%, respectively.
The performance also surpasses PGFA [9], a famous pose-guided approach based
on a CNN backbone, by 20.0% and 13.8%. Moreover, the UBN model outper-
forms the transformer-based PAT by 3.7%/0.7% and TransReID by 1.6%/1.0%.

As for Occluded-REID, which can only be used for testing, we evaluate
on it with our model trained on Market1501. The model achieved an mAP of
74.8% and R1 of 79.9%, which outperforms most recent methods. Notably, the
achieved mAP of 74.8% on this dataset is state-of-the-art performance. How-
ever, as transformer-based architectures struggle to obtain strong generalization
results on small training sets [33], the UBN model failed to achieve the highest
R1 accuracy on this dataset.

On Holistic Datasets On Market-1501, we obtain 0.4% (mAP) and 0.5% (R1)
improvement over TransReID. On DukeMTMC, we also achieve 0.5% (mAP) and
0.6% (R1) improvement. As far as we know, we are the first to achieve R1 over
90% on DukeMTMC-reID among approaches focusing on occluded PRID. There-
fore, UBN is also capable of promoting model learning on holistic datasets, albeit
with smaller improvements compared to the occluded ones. This demonstrates
that the uncovering occlusion design can benefit overall PRID performance.

4.4 Ablation Studies

Ablation Study of Mask Supervision Strategies In Section (3.5), we in-
troduce four mask supervision strategies: non-person supervision, occlusion su-
pervision, all-drop supervision and all-keep supervision. In Table 2, we conduct
comparison experiments of our four strategies (line 2-5) with the baseline Tran-
sReID (line 1). The results show that all supervision strategies are effective and
could promote the performance consistently and significantly.

Table 2. Performance on the baseline and different mask supervision strategies.

Occ-Duke
Setting mAP R1 R5 R10

TransReID 55.7 64.2 - -

non-person supervision 57.3 65.2 79.0 84.2
occlusion supervision 57.5 64.3 79.2 84.5
all-drop supervision 57.2 64.9 78.7 83.8
all-keep supervision 57.2 65.1 78.8 83.6

Table 3. Performance analysis of different fusion approaches. Comparing with the
baseline TransReID, all fusion approaches would effectively promote performance. Best
performance would be achieved once token-level fusion is adopted.

Occ-duke
Fusion Approaches mAP R1 R5 R10

TransReID 55.7 64.2 - -

input-level 56.7 64.4 79.0 83.0
token-level 57.3 65.2 79.0 84.2
semantic-level 57.3 65.0 78.7 83.8
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Ablation Study of Fusion Approaches We discuss various approaches for
integrating the MIR feature into the FEM, including input-level, token-level, and
semantic-level integration. The input-level integration denotes the output of the
MIR Module is directly used as the input of FEM. The token-level integration
means that the MIR feature is regarded as a new embedding and added to
input sequence embeddings. And the semantic-level integration refers to adding
the MIR-feature to the output of FEM. As shown in Table 3, we claim that
the token-level fusion method is better. The mAP/R1 of the method achieves
57.3%/65.2%, higher than the input-level one (56.7%/64.4%) and the semantic-
level one (57.3%/65.0%). Since the MIR-feature is used for reconstructing the
occluded pedestrian, it primarily reflects the contour, edge, shape features, and
other low-level representations of the image. So it’s reasonable that fusing the
MIR feature and the original information at the token level is more suitable.
In this way, on the one hand, the MIR-feature can provide more valuable clues
for low-level information filtering out the occlusion, and on the other hand, it
can make full use of the high-level semantic representational capacity of the
transformer-based model.

4.5 Visualization Results

The retrieval results of TransReID [3] and our proposed UBN on Occlude-REID
dataset are illustrated in Figure 3. It is obvious our UBN achieves significantly
better retrieval performance compared with the TransReID, especially when se-
rious occlusion appears.

TransReID UBN

Fig. 3. Retrieval comparison of TransReID and our UBN. The images on the left are
from the Occlude-REID query dataset. The images in green and red boxes indicate
the correctly and wrongly retrieved instances respectively. The retrieval results are
arranged from left to right in descending order of matching scores.

5 Conclusion
In this paper, we present Uncover the Body Network (UBN), a MIM-based oc-
cluded person re-identification network. UBN is inspired by recent MIM models
that can recover the whole image with partly known patches. Instead of randomly
masking the images, UBN uses a Mask Prediction Module (MPM) to readily lo-
cate the occluded patches and then applied them to an occlusion-guided Masked
Image Reconstruction Module (MIR) to reconstruct the holistic person images.
Experimental results on both the occluded and holistic ReID benchmarks have
demonstrated the superiority of UBN over the state-of-the-art approaches.
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