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ABSTRACT

Low resolution (LR) is one of the most challenging factor in
pedestrian detection. In this paper, we propose a fused dis-
criminative metric learning (F-DML) approach for low reso-
lution pedestrian detection without explicit super resolution.
We firstly learn a discriminative high resolution (HR) feature
space as target space. Then, an optimal Mahanalobis metric
is learned to transform the LR feature space into a new LR
classification space, which largely preserves the discrimina-
tive structure of the HR feature space. Finally, a weighted
K-nearest neighbors classifier is applied in the LR classifica-
tion space which inherits good discrimination from HR fea-
ture space. A new training strategy is proposed to find the
fewest and most representative LR-HR exemplars. In addi-
tion, we build a new dataset for the evaluation of low reso-
lution pedestrian detection methods. Extensive experimental
results demonstrate that the proposed approach performs fa-
vorably against the state-of-the-art methods.

Index Terms— Pedestrian detection, Low resolution,
Metric learning

1. INTRODUCTION

Among the various domains of pedestrian detection, low res-
olution (LR) pedestrian detection is the most imperative and
challenging. In large-scale open scenes, the size of pedestrian
is very small (approximate 10-20 pixels tall). For such LR
images, the details of the visual appearances are lost. Since
the visual features cannot be reliably extracted from such few
pixels, it is very difficult to detect such LR pedestrian.

The performance of existing pedestrian detection ap-
proaches drops with the resolution decreasing, no matter the
traditional approaches such as HOG [1], DPM [2], ACF [3]
and Checkerboards [4], but also hot deep learning based ap-
proaches such as JDN [5], DeepParts [6] and RPN-BP [7].
In several detailed surveys [8, 9, 10, 11], it is shown that all
the existing methods failed on LR pedestrian images. How-
ever, only a few studies paid attention to low resolution issue.
MT-DPM [12] learned a resolution-aware DPM model and
RACNN [13] proposed a multiple CNN-based architecture.

The loss of discriminative details and heavy noises of the
LR images restricts most LR pedestrian detection method-

s. To solve the former problem, we extract prior knowledge
which is implicitly included in a set of training instances of
LR-HR pairs. There is a well-known assumption that the dis-
crimination of HR feature space is much better than LR fea-
ture space. If we can learn a metric to transform the chaotic
LR feature space into a new feature space which has similar
structure and discrimination with HR feature space, we can
directly classify the pedestrian from background in this new
feature space without explicit super resolution (SR). To solve
the latter issue, we present a new attempt to use the differ-
ence of LR feature vectors to extract feature. It is assumed
that the noises in LR images are identically distributed in the
same scene. The difference between LR feature vectors may
greatly reduce the impact of the identically distributed noises.

In this paper, we propose a fused discriminative metric
learning method (F-DML) for low resolution pedestrian de-
tection. Firstly, the F-DML learns a discriminative HR feature
space as target space. Then, an optimal Mahanalobis metric
is learned to transform the LR feature space into a new space,
which largely preserves the structure of the discriminative HR
feature space. Finally, a weighted KNN classifier is applied
in the new projected space for classification.

The main contributions of this paper are summarized as
follows: (1) we propose a new metric learning method, which
uses the discriminative HR feature space to guide the classi-
fication of LR feature space. This makes it possible to detect
LR pedestrian without explicit SR. (2) We use the difference
in Mahalanobis distance to represent the LR features to weak-
en the negative impact of heavy noises. (3) We design a smal-
l instance based training strategy to choose the fewest and
most representative LR-HR exemplars pairs. (4) We built a
more challenging dataset for low resolution pedestrian detec-
tion problem.

2. FUSED DISCRIMINATIVE METRIC LEARNING

Firstly, we will give an overview of our discriminative metric
learning approach, which is summarized in Figure 1.

In the training phase, we need to learn a metric to pre-
serve the discriminative structure of HR feature space when
transforming the chaotic LR feature space. Firstly, a HR-LR
training dataset is built by resizing the HR training images
into LR images by Gaussian pyramid. Then we obtain a dis-
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Fig. 1. The framework of the Discriminative Metric Learning
for LR pedestrian detection.

criminative HR feature space in Euclidean distance by Partial
Least Squares Regression, which can contribute to the classi-
fication performance in LR feature space. Next, we construct
affinity matrices to represent the structure of LR and HR fea-
ture spaces. Finally, we put forward a metric learning method
to learn a metric to preserve the discriminative structure of
HR feature space when transforming the chaotic LR feature
space into LR classification space.

Assume Dl = {Il} and Dh = {Ih} are the LR-HR train-
ing datasets. L = {li, i ⊂ Dl} and H = {hi, i ⊂ Dh}
denote the corresponding feature vectors. Let M be the learn-
ing Mahalanobis distance metric, the objective function is to
minimize the distance between the affinities of discriminative
HR feature space and LR classification space as follows:

M∗ = argmin
M

Dis(Aff(H,W ), Aff(L,M)) (1)

where W represents the class-aware discriminative projec-
tion matrix. Aff() denotes the function from feature space
to the affinity matrix which reflects the relative structure of
corresponding feature space. Dis() means the distance mea-
sure function of two affinities matrices.

In the testing phase, the input LR test images are classi-
fied by weighted K-nearest neighbors classifier in LR classi-
fication space by using the learned metric M .

2.1. Discrimination of High Resolution Feature Space

As the target space used to guide the transformation of LR
feature space, HR feature space needs to have good discrim-
ination. Therefore, we obtain a more discriminative HR fea-
ture space in Euclidean distance by Partial Least Squares Re-
gression (PLSR) [14]. Here we want to project the HR feature
vectors into a new discriminative space to ensure the correla-
tion between projected features and labels in each dimension.

Let H̃ be the zero-mean HR feature matrix and ỹ denote
the zero-mean class label vector. Let W = {ω1,ω2, ...ωp}
be the discriminative projection matrix. We want to maximize
both the variance of projected HR vectors and the correlation
between the projected HR vectors and labels as follows:

ω∗i = argmax
|ωi|=1

[Cov(H̃ωi, ỹ)]
2

= argmax
|ωi|=1

V ar(H̃ωi)V ar(ỹ)[Corr(H̃ωi, ỹ)]
2

(2)

where Cov() denotes the sample covariance, V ar() means
the variance and Corr() indicates the correlation.

The ωi can be solved by Lagrange multipliers method
[15]. After obtaining the projected vector ti = H̃ωi in the
ith dimension, the regression function is constructed based on
the nonlinear iterative partial least squares (NIPALS) [16]. Fi-
nally, the HR feature space H is projected to a more discrim-
inative space Z in Euclidean distance, namely Z = {zi =
Whi, zi ⊂ Z}.

2.2. Metric Learning for Similar Space Structure

In this section, we seek for an optimal transformation which
projects the LR feature space to a LR classification space, so
that the structure and distribution of discriminative HR feature
space can be preserved in the LR classification space.

Firstly, we need to represent the structure of these two fea-
ture spaces. For discriminative HR feature space, the distance
matrix is computed in Euclidean distance as Dp(zi, zj) =
(zi − zj)

T (zi − zj). For LR feature space, the distance ma-
trix is defined by Mahalanobis distance: Dq(li, lj) = (li −
lj)

TM(li − lj). M is a positive semi-definite (PSD) matrix
which changes the structure distribution of LR feature space.

The structure of discriminative HR feature space is de-
fined by the normalized affinity matrix P = {pij}, where

uij = exp(−Dp(zi, zj)
2σhr

), pij =
uij∑
k 6=i uik

, pii = 0 (3)

so that P is a distribution that represents the nearest neighbor
probability from vector zi to zj .

Similarly, we construct the normalized affinity matrix
Q = {qij} of the classification LR feature space:

vij = exp(−Dq(li, lj)
2σlr

), qij =
vij∑
k 6=i vik

, qii = 0 (4)
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Choosing the KL divergence as distance measure for two
distributions, we get the objective function as follows:

M∗ = argmin
M

∑
ij

KL[pij |qij ], s.t. M � PSD (5)

Denoted by f(M) ,
∑
ij KL[pij |qij ], we can use the

gradient-decent technique to minimize the objective function:

∇f(M) =
1

2σlr

∑
ij

(pij − qij)(li − lj)(li − lj)
T (6)

Metric M is updated by M t+1 = M t − ε∇f(M t),
where ε is the step length of gradient descent.

Since M has to be PSD, we need to eliminate its negative
components by equation 7. λk is the eigenvalue of M and vk
is the corresponding eigenvector.

M̂ =
∑
k

max(λk, 0)vkv
T
k (7)

2.3. Classifier and Multi-Channel Fusion

Denote the test image It and the corresponding LR feature
vector lt. The confidence score S is computed by weighted
voting in K-nearest neighbors of the training LR exemplars.

S =

∑K
i g(lt, li)ci∑K
i g(lt, li)

, ci ∈ {0, 1} (8)

where C = {ci} denotes the class label. The voting weight
is defined as g(lt, li) = exp(− (lt−li)TM(lt−li)

2σ ). The σ rep-
resents the variance of the difference between lt and li in the
projected LR classification space.

We believe that different features can preserve differen-
t discriminative characteristics of HR feature space. Using
N kinds of feature descriptors in HR feature space, we can
learnN matrices. The weighted summation of the confidence
scores is used to fuse all the N classifiers as follows:

Sfinal =

N∑
i=1

λiSi (9)

where λi denotes the weight of ith channel.

3. UNDERSTANDING PROPERTIES

In this section, we present several experiments to analyze the
properties of the proposed F-DML method.

Datasets. Although pedestrian detection is a well-defined
problem with rich datasets, none of them is suitable for LR
pedestrian detection. The pedestrian under 21 pixels tall are
not annotated in the traditional datasets. Therefore, we cre-
ate a comprehensive dataset for LR pedestrian detection task
by gathering three famous datasets together (INRIA [1], ETH

(a) The effect of the number of training instances for the 
proposed DML

(b) The comparison between the proposed training 
strategy and other training methods without iteration  

Fig. 2. The contribution of the new training strategy. (a) find
the optimal number of LR-HR training instances; (b) find a
better local minimum in the solution space.

[17] and Caltech [18]). For training dataset, we use the INRI-
A training dataset with a set of labeled LR-HR patch pairs,
which includes 2416 positive pairs and 12180 background
pairs. The resolutions of HR-LR patches are 128 × 64 and
20× 10. For testing dataset, we crop 5614 positive exemplars
and 58732 negative exemplars with the resolution of 20× 10.

Feature Extraction. For LR exemplars, valid pixels are
too few for traditional feature extraction approaches. So
the rawpixel is a good choice. For HR exemplars, we use
HOGLUV [10], VGG16 (layer fc7) [19] and SketchTokens
[20] to express the HR feature space respectively.

Evaluation Metric. The detection error tradeoff (DET)
curve and average miss rate (AMR) [8] are the main evalu-
ation metrics. The x-axis corresponds to false positive per
window (FPPW) and the y-axis shows the miss rate.

3.1. Find Better Training Data and Local Minimum

Because of the heavy noises in LR pedestrian images, it is not
wise to use all the training LR-HR exemplars pairs to train
the Mahalanobis kernel M . We propose a iterative training
strategy to choose the fewest and most representative LR-HR
exemplars pairs. In each iteration, we cluster the false neg-
ative and false positive HR-LR patches by Gaussian Mixture
Model and redivide the training dataset. In addition, the met-
ric M is initialized with the last trained result.

Figure 2(a) shows that the proposed DML reaches the best
performance when using 150 training exemplars. Too many
training exemplars will flat the metric M . Too few training
exemplars will not cover the entire solution space. Compared
to the strategies of directly clustering the training exemplars
and randomly initializing metric M , figure 2(b) shows that
the iterative strategy will help to find a better local minimum
in the solution space by choosing the training HR-LR exem-
plars and iteratively initializing the metric M .

3.2. Discriminative Analysis of HR Feature Space

We explore the effect of PLSR on improving the discrimi-
nation of HR feature space in Euclidean distance. Figure 3
shows the visualization of the discrimination of LR and HR
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Fig. 3. Visualization for the discrimination of feature spaces.
(Left: LR+PCA; Mid: HR+PCA; Right: HR+PLSR+PCA)

(b) HR Affinity Matrix (c) LR Affinity Matrix (d) Transformed LR Affinity Matrix(a) Comparison to the baseline methods

Fig. 4. The advantages of proposed metric learning method.
(a) Comparison to the benchmark methods. (b-d) Visualiza-
tion of affinity matrices (HR, LR and transformed LR spaces).

feature space. Principal Component Analysis (PCA) [21] is
used to extract the first two dimensions of the training exem-
plars. Treating the HR feature space as baseline, the discrimi-
nation of LR feature space is totally lost. On the contrary, the
projected HR feature space has better discrimination.

3.3. Why Choosing Metric Learning

To evaluate the effect of proposed metric learning approach,
we set up two benchmarks for comparison: 1) directly ex-
tract feature from LR images and apply classifier; 2) rebuild
HR images from LR images by SR technique and extract fea-
ture. The comparison with these two traditional solutions are
shown in Figure 4(a). It is shown that KNN is more suitable
for LR images than SVM (LR+KNN vs. LR+SVM). Direct-
ly extracting feature from LR images (LR+RawPixel+X) has
the worst performance. SR process (LR+SR+X) significant-
ly improves the performance. However, the proposed method
outperforms others in a large margin. Figure 4(b-d) show the
visualization of affinity matrices in three feature spaces.

4. COMPARATIVE EXPERIMENTS

In this section, we compare the proposed method with several
state-of-the-art pedestrian detection methods.

Comparative Methods. Since the Caltech pedestrian
dataset doesn’t annotate the pedestrians lower than 21 pixels
tall, the benchmarks in Caltech pedestrian dataset are not
available for LR pedestrian detection. Therefore, we down-
load all the open-source pedestrian detection methods for
comparison, including HOG [1], DPM [2], SketchTokens
[20], JDN [5], ACF [3], Checkerboards [4] and RPN-BF [7].

Training. To ensure a fair comparison, all the compara-
tive methods are trained on INRIA. All the comparative meth-

(a) Comparison on traditional datasets (20x10 pixels) (b) Comparison on traditional datasets (16x8 pixels)

(c) Comparison on traditional datasets (10x5 pixels) (d) Comparison on new XJTU datasets (20x10 pixels)

Fig. 5. The comparisons with the state-of-the-art methods.

ods are fine tune based on the LR pedestrian detection task.
Multi-resolution Comparisons. The testing exemplars

are resized to the resolutions of 20×10, 16×8, 10×5. Figure
5(a-c) shows the comparison with state-of-the-art methods on
multi-resolution traditional datasets. We can see that the pro-
posed method outperforms others on all these LR resolutions.

Comparisons on New Challenging Dataset. Existing
pedestrian datasets can not fully test an approach for LR
pedestrian detection. Therefore, we collect a new dataset for
the evaluation of LR pedestrian detection methods, which is
called XJTU (see supplemental files). Figure 5(d) shows the
comparison with state-of-the-art methods on the new dataset.

5. CONCLUSION

In this paper, we propose a fused discriminative metric learn-
ing method for LR pedestrian detection. We use the discrimi-
native HR feature space as prior information to guide the clas-
sification in LR feature space. A new training strategy is de-
signed to find better training exemplars and model parameter-
s. In addition, we build a new LR pedestrian dataset with the
pedestrians lower than 21 pixels tall. The proposed method
outperformed the state-of-the-art methods on LR pedestrian
detection task on different resolutions and datasets.
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