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Abstract

Clustering often benefits from side information. In
this paper, we consider the problem of multi-way con-
strained spectral clustering with pairwise constraints
which encode whether two nodes belong to the same
cluster or not. Due to the nontransitive property of
cannot-link constraints, it is hard to incorporate cannot-
link constraints into the framework. We settle this diffi-
culty by restricting the spectral vectors with nonnega-
tive elements. An iterative method is proposed to op-
timize the objective. Experiments on several publicly
available datasets demonstrate the effectiveness of our
algorithm.

1. Introduction
Clustering is one of the most widely used techniques

for data analysis. Typically, it works in an unsupervised
manner, with performance highly depending on the de-
signed distance (or similarity) metric. A major diffi-
culty for clustering lies in the large semantic gap be-
tween clustering results and feature based distance. Re-
cent research efforts have shown that the semantic gap
can be reduced by incorporating high-level information
[12, 7, 13, 9], referred as constrained clustering.

Wagstaff and Cardie [12] are the first to consider con-
strained clustering problem. They incorporate pairwise
constraints, which specifies whether two nodes belong
to the same cluster or not, into k-means and achieve
much better performance. Since then, a lot of studies
have been made (see [1] for a overview).

We focus on the problem of integrating pairwise con-
straints into spectral clustering [10, 11]. A major diffi-
culty for constrained spectral clustering lies in the non-
transitive property of cannot-link constraints[14, 6]. As
a result, the cannot-link constraints are usually either
discarded [14] or limited to two-class problem [13, 9].
To utilize cannot-link constraints in multi-way spectral
clustering, a few algorithms were proposed. Kamvar

et al. [3] and Kulis et al. [4] modified the similarities
according to the constraints, and used standard spectral
clustering algorithms or kernel k-means on the modi-
fied similarities to achieve multi-way clustering. Li et
al. [6] calculated the first k eigenvectors of an uncon-
strained normalized cut problem, and adapted them to
both must-link and cannot-link constraints by a semi-
definite programming routine. Although these methods
gain certain success in clustering accuracy, the cannot-
link constraints are far from being gracefully and fully
exploited.

In this paper, we propose a novel method for multi-
way constrained spectral clustering, namely Nonneg-
ative Constrained Spectral Clustering (NCSC). It is
achieved by adding nonnegativity constraints to the
spectral clustering problem, and so that the cannot-link
constraints could be gracefully incorporated. We also
present an iterative algorithm to optimize the problem.
Experiments on different datasets show that our algo-
rithm performs much better than the state-of-the-art al-
gorithms.

2. Normalized Cut and Spectral Clustering
We first give a brief review to the normalized cut

and spectral clustering problem [10, 11]. Denote
G(V,E,W ) as an undirected graph G with vertex set
V and edge set E, together with edge weights W : V ×
V → Rn×n

+ , where n = |V | is the cardinality of V . The
task of clustering is to partition vertex set V into c clus-
ters {Ci}ci=1, with |Ci| = ni. We define the cut and the
volume as, cut(C1, C2) =

∑
i∈C1,j∈C2

Wij , vol(C) =∑
i∈C di, with di =

∑
j∈V Wij . Then the normalized

cut achieves clustering by minimizing the total cut bal-
anced with the cluster volume, as [11],

Jncut =
c∑

i=1

cut(Ci, Ci)

vol(Ci)
, (1)

where Ci = V \Ci. Denote yi ∈ {0, 1}n×1 as the indi-
cator matrix for cluster Ci, and let

Y = [y1/
√

vol(C1), ...,yc/
√

vol(Cc)], (2)
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Then the minimization of eq. (1) becomes [11],

min
Y TDY=I, Y as eq.(2)

tr(Y TLY ), (3)

where D = diag(d) is the degree matrix, and L =
D −W is the Laplacian matrix. The well known spec-
tral clustering algorithm relaxes the binary constraints
for Y in eq. (3) to real value and solves the problem
by eigenvalue decomposition. However, the eigenvec-
tor solutions are with mixed signs which makes incor-
porating the cannot-link constraints difficult. In the next
section, we will show how this difficulty can be settled
by adding nonnegativity constraints.

3. Constrained Spectral Clustering
Denote Qm, Qc as the constraint matrices, where the

element qmij , qcij ∈ {0, 1} encodes the must-link and
cannot-link constraint between node i and j. Denote fTi
as the ith row of Y , which represents the indicators for
node i. For a must-link constraint between i and j, the
indicators fi and fj should be the same. Thus we can
have an objective function as,

Jm-link =
∑

i,j∈V

qmij ||fi − fj ||2

= 2tr(Y T (Dm −Qm)Y ),
(4)

where Dm = diag(dm
i ), with dm

i =
∑

j∈V qmij .
However, since the solutions are with mixed signs, it

is hard to formulate cannot-link constraints into the op-
timization. We settle this difficulty by restricting Y with
nonnegative values. Under nonnegativity constraints of
Y , for any two nodes i and j, fTi · fj ≥ 0 holds. If a
cannot-link constraint exists between i and j, fTi ·fj = 0.
Thus we can encode the cannot-link constraints by min-
imizing,

Jc-link =
∑

i,j∈V

qcij(f
T
i · fj)

= tr(Y TQcY ).
(5)

Based on the above analysis, we propose the follow-
ing optimization problem (NCSC),

min tr(Y TLY ) + γmtr(Y T (Dm −Qm)Y )
+ γctr(Y

TQcY )
s.t. Y TDY = I, Y ≥ 0.

(6)

Besides encoding cannot-link constraints into the opti-
mization framework, the nonnegativity restriction also
helps assigning the clusters, which is usually done by
k-means or spectral rotation in previous researches.
3.1. Optimization

In this subsection, we develop an algorithm to solve
the optimization problem shown in eq. (6). Formally,
the optimization in eq. (6) is equivalent to,

min tr(Y T (G− σ
dmin

D)Y )

s.t. Y TDY = I, Y ≥ 0,
(7)

where G = L + γm(Dm − Qm) + γcQ
c, as

tr(Y T ( σ
dmin

D)Y ) = σ
dmin

tr(I) = nσ
dmin

is a constant.
We set σ = λm to be the largest eigenvalue of G, and
thus G − σ

dmin
D becomes non-positive definite. This

step makes the optimization as a well-behaved problem
[8].

Since Y TDY = I , we introduce Lagrangian multi-
plier Λ ∈ Rc×c, and thus the Lagrangian function is,

L(Y ) = tr(Y THY ) + tr(Λ(Y TDY − I)), (8)

where H = G− σ
dmin

D.
The gradient of L(Y ) with respect to Y is,

∂L(Y )

∂Y
= 2HY + 2DY Λ. (9)

Using the Karush-Kuhn-Tucker complementarity
condition [2] (∂L(Y )

∂Y ij
)Yij = 0, we get

(HY +DY Λ)ijYij = 0. (10)

Since H and Λ may take mixed signs, we introduce
H = H+ − H− and Λ = Λ+ − Λ−, where + and −

indicate respectively the positive and negative part of a
matrix. Then we get the following updating rule:

Yij ← Yij

√
[H−Y +DY Λ−]ij
[H+Y +DY Λ+]ij

. (11)

It remains to determine the Lagrangian multiplier Λ.
Following the similar deduction in [8], we obtain Λ =
−Y THY .

Next, we show that the updating algorithm as eq.
(11) converges.

Definition 1. [5] Z(h, h′) is an auxiliary function for
F (h) if the conditions Z(h, h′) ≥ F (h), Z(h, h) =
F (h) are satisfied.

Lemma 1. [5] If Z is is an auxiliary function for F ,
then F is non-increasing under the following updating
rule,

h(t+1) = argmin
h

Z(h, h(t)). (12)

Theorem 1. Let J(Y ) = tr(Y THY )+ tr(Λ(Y TDY ))
by ignoring−tr(Λ) of eq. (8). Then the following func-
tion

Z(Y, Y ′) =
∑
ij

(Y ′H+)ijY
2
ij

Y ′
ij

+
∑
ij

(DY ′Λ+)ijY
2
ij

Y ′
ij

−
∑
ijk

(H−)jkY
′
jiY

′
ki(1 + log

YjiYki

Y ′
jiY

′
ki
)

−
∑
ijkl

(Λ−)kjDjlY
′
jiY

′
lk(1 + log

YjiYlk

Y ′
jiY

′
lk
)
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is an auxiliary function for J(Y ). Furthermore, it is a
convex function in Y and its global minimum is,

Yij = Y ′
ij

√
[H−Y +DY Λ−]ij
[H+Y +DY Λ+]ij

. (13)

Proof. For space limits, we omit it. It will be presented
in the longer version of this paper. �
Theorem 2. Under the updating rule of eq. (11), the
Lagrangian function L(Y ) in eq. (8) decreases mono-
tonically.
Proof. By Lemma 1 and Theorem 1, we have J(Y (t)) =
Z(Y (t), Y (t)) ≥ Z(Y (t+1), Y (t)) ≥ J(Y (t+1)). Thus
J(Y (t)) ( and L(Y (t))) is monotonically decreasing. �

4. Discussion

4.1. Relationship with LCSC Algorithm

Linear Constrained Spectral Clustering (LCSC) al-
gorithm [14] only considers must-link constraints.
Given a must-link constraint between node i and j
(Qm

ij = 1), LCSC encodes it by UT
k Y = 0, where

Uk is an n × 1 vector with only two non-zero ele-
ments: Uk(i) = 1, Uk(j) = −1. For all must-link
constraints, the linear constraint is UTY = 0, where
U = [U1, U2, ..., Unm ], with nm denoting the number
of must-link constraints. We have the following propo-
sition:

Proposition 1. NCSC leads to LCSC when γm → +∞,
γc = 0 and the nonnegativity constraints are discarded.
Proof. By moving the linear constraint of LCSC to the
objective function, we have,

min tr(Y TLY ) + γtr(Y TUUTY )
s.t. Y TDY = I.

(14)

where γ should → +∞ to ensure the linear constraint
satisfied. Since U is formed by the nonzero elements
of Qm, it is easy to check that UTU ≡ 2(Dm − Qm).
Thus proposition 1 holds. �

Only regarding must-link constraints, besides impos-
ing nonnegativity constraints, our NCSC algorithm has
an advantage over LCSC in at least two aspects: 1)
the proposed NCSC can encode soft constraints into the
optimization, which is especially useful when the con-
straints are noisy, inconsistent or in continuous form; 2)
the proposed NCSC does not need to compute the in-
verse of an nm × nm matrix or the SVD of an n × nm

matrix, which makes LCSC impossible to work when
nm is very large.

In the experiments, it turned out that typically the
bigger the γm was (more must-link constraints were sat-
isfied), the better the performance was. So we fixed γm
of NCSC as 104 in our experiments, by which we only
need to tune one parameter γc.

4.2. Relationship with Similarity Modification
based Algorithms

Similarity modification based algorithms [3, 4] mod-
ify the similarities according to the constraints, and
achieve multi-way clustering by standard spectral clus-
tering algorithms or kernel k-means. In [3], the sim-
ilarities are modified to 1’s and 0’s for must-link and
cannot-link nodes, respectively. In [4], the similarities
are shifted by ±n/(cnmc), with n, c and nmc being the
numbers of nodes, clusters and pairwise constraints, re-
spectively.

In NCSC algorithm, however, the constraints are not
formulated into the similarities, but contribute as inde-
pendent penalty items (although they together form a
quadratic function). In this way, we will not change the
structure of the original similarities.

5. Experiments
We compare the proposed NCSC algorithm with

LCSC [14], Spectral Learning (SL)[3]1, and Con-
strained Clustering with Spectral Regularization
(CCSR) [6]. LCSC only utilizes must-link con-
straints. SL and CCSR and our NCSC incorporate both
must-link and cannot-link constraints. The results of
Normalized Cut (NC) [10] are also shown for reference.

All the algorithms are graph based, and to make
fair comparisons, we use the same graphs for all algo-
rithms. We use the weighted k-nearest-neighbor graph
with k = 20 and σ determined following the self-
tuning algorithm[15]. For NCSC, we use the results
from the algorithm without nonnegativity constraints
as initialization. We fix γm = 104, and tune γc
from linspace(0.1, 1, 10)

∪
linspace(1, 10, 10) and re-

port the best results.
We have collected four public datasets, including two

UCI datasets Iris, Sonar2, one hand written digital im-
age dataset USPS3 and one face image dataset Extended
Yale Face B (EYaleB)4. Detailed information of the four
datasets is summarized in Table 1.

For each dataset, 10 different numbers of pairwise
constraints are randomly generated using ground truth

1For similarity modification based algorithms, we only shown the
results of [3] as it performs better than [4] on most of the datasets.

2http://archive.ics.uci.edu/ml/
3http://www-i6.informatik.rwth-aachen.de/˜keysers/usps.html
4http://vision.ucsd.edu/˜leekc/ExtYaleDatabase/ExtYaleB.html.

We resize the images with 30 × 40 pixels, and choose the last 10
subjects to form our dataset
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Dataset Size Dimension # of Clusters
Iris 150 4 3

Sonar 208 60 2
USPS 9298 256 10

EYaleB 5760 1200 10

Table 1. Datasets descriptions.

Figure 1. Clustering error vs. # pairwise
constraints for all algorithms.

labels. For a fixed number of pairwise constraints, we
report the results averaged over 10 trials.

We use clustering error (ERR) as the evaluation met-
ric. Denote qi as the clustering result from the clus-
tering algorithm and pi as the ground truth label of xi.

ERR is defined as: ERR = 1 − 1
n

n∑
i=1

δ(pi,map(qi)),

where δ(x, y) = 1 if x = y; δ(x, y) = 0 otherwise,
and map(qi) is the best mapping function that permutes
clustering labels to match the ground truth labels using
the Kuhn-Munkres algorithm.

Figure 1 shows ERR vs. # pairwise constraints on
the four datasets for all algorithms. We can see that the
proposed NCSC outperforms all the other algorithms in
nearly all of the cases.

To illustrate the performances of utilizing must-link
and cannot-link constraints respectively, we respec-
tively vary the number of cannot-link and must-link
constraints while fixing the number of the other ones.
The ERR vs. # cannot-link constraints and ERR vs. #
must-link constraints on Iris dataset are shown in Figure
2. From Figure 2, we have the following conclusions:
1) when there are no cannot-link constraints, LCSC per-
forms better than CCSR. This is because LCSC ex-
ploits the must-link constraints fully by guaranteeing all
the must-link constraints satisfied. From Proposition 1,
LCSC can be regarded as a special case of NCSC, and
thus NCSC has similar performance as LCSC for must-
link constraints; 2) CCSR achieves certain success in
exploiting cannot-link constraints. But NCSC performs

(a) (b)

Figure 2. Clustering error with # cannot-
link constraints varying (a) and # must-
link constraints varying (b).

better especially for the numbers near two ends. When
the number of cannot-link constraints rises high, NCSC
can even reach 100% accuracy.

To sum up, NCSC encodes both must-link and
cannot-link constraints best among all the algorithms.
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