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DMA: Dual Modality-Aware Alignment for
Visible-Infrared Person Re-Identification
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Abstract— Visible-infrared person re-identification (VI-ReID)
aims to identify the same person across visible and infrared
images. Its main challenge is how to extract modality-irrelevant
person identity information. To alleviate cross-modality dis-
crepancies, existing methods typically follow two paradigms:
1) Transform visible images into gray-scale color space and
map them into the infrared domain. 2) Stack infrared images
into RGB color space and map them into the visible domain.
However, limited by different optical properties of visible and
infrared waves, such mapping commonly leads to information
asymmetry. Although some efforts prevent such discrepancies
by data-level alignment, they typically meanwhile introduce
misleading information and bring extra divergence. Therefore,
existing methods fail on effectively eliminating the modality
discrepancies. In this paper, we first analyze the essential
factors to the generation of modality discrepancies. Secondly,
we propose a novel Dual Modality-aware Alignment (DMA)
model for VI-ReID, which can preserve discriminative identity
information and suppress the misleading information within
a uniform scheme. Particularly, based on the intrinsic optical
properties of both modalities, a Dual Modality Transfer (DMT)
module is proposed to perform compensation for the information
asymmetry in HSV color space, thereby effectively alleviating
cross-modality discrepancies and better preserving discriminative
identity features. Further, an Intra-local Alignment (IA) module
is proposed to suppress the misleading information, where a fine-
grained local consistency objective function is designed to achieve
more compact intra-class representations. Extensive experiments
on several benchmark datasets demonstrate the effectiveness
of our method and competitive performance with state-of-the-
art methods. The source code of this paper is available at
https://github.com/PKU-ICST-MIPL/DMA_TIFS2023.

Index Terms— Visible-infrared person re-identification, cross-
modality discrepancies, dual modality transfer, intra-local
alignment.

I. INTRODUCTION

PERSON re-identification (ReID) aims to identify the same
person across different times and spaces. To extract the

identity information, many researches [1], [4], [8], [9], [11]
focus on deep learning-based methods [3] and have achieved
great progress. However, these methods are only suitable for
well-lit daytime due to the dependency on bright lighting
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Fig. 1. The essential discrepancies between visible images and infrared
images. The mapping to the RGB color space or the gray-scale color space
both result in information asymmetry, remaining cross-modality discrepancies.

environments. To achieve full-time ReID, recent works [17],
[37] have noticed such an important but challenging ReID
setting, Visible-Infrared ReID (VI-ReID), which aims to match
the same person across day and night.

VI-ReID refers to identifying and matching individuals
across visible and infrared images. The main challenge of
VI-ReID is how to extract modality-irrelevant person identity
information, resisting large modality discrepancies between
the visible and infrared modalities. Inspired by general ReID
methods [3], existing VI-ReID methods typically alleviate
such cross-modality discrepancies based on two approaches:
feature-level alignment [18], [23], [32], [58] and data-level
alignment [14], [16], [51], [53].

Feature-level alignment-based methods commonly utilize
neural networks to extract and map identity features from
different modalities into a shared space for alignment. Never-
theless, these approaches frequently face difficulties associated
with modality information, leading to a decrease in iden-
tity discrimination. Data-level alignment-based methods [13],
[14], [15], [16] primarily address this challenge through two
paradigms. As shown in Figure 1, some methods involve
transforming visible images into gray-scale color space and
mapping them into the infrared domain for representation
learning. On the other hand, others forcibly stack and map
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Fig. 2. Comparison of our DMA and existing methods. The above part
shows the enhancement results of the existing methods (global-level [62] and
local-level [65]) and our method on the visible light image and the infrared
image. The following part shows the corresponding distribution of samples in
the feature space.

infrared images into the RGB color space for representation
learning. However, the wavelength, frequency, and radiation
properties of visible waves and infrared waves are almost
inconsistent. The resulting issue of inconsistent mapping exac-
erbates the discrepancies between modalities and prevents the
extraction of the identified features. Fundamentally, the visible
spectrum encompasses shorter wavelengths that allow for the
perception of rich color information, whereas the infrared
spectrum exhibits limited hue diversity. Additionally, infrared
spectrum encompasses longer wavelengths and is sensitive to
the thermal radiation emitted by the human body, whereas vis-
ible spectrum does not convey thermal radiation information.
As a result, regardless of whether the mapping takes place in
the RGB or gray-scale color space, current methods naturally
introduce information asymmetry, thus hindering the reduction
of disparities between modalities.

In order to align the visible images and infrared images in
an information-symmetric domain, it is necessary to explore
an appropriate color space to eliminate the cross-modal
differences. However, existing alignment methods typically
meanwhile introduce misleading information and bring extra
divergence. As shown in Figure 2, global-level methods [51],
[53], [62] often come with fuzzy edges and unrecoverable
texture details, while causing radiation diversity. Besides,
local-level [65], [66], [80] methods typically corrupt the
most discriminative modality-common information, e.g., body
shapes, through randomizing image patches, which we refer
to as intra-local information. As a result, these methods
typically lead to large intra-class variation and small inter-
class variation. Although some efforts [8], [56] alleviate
the aforementioned challenges by customized constraints, the
difference of intrinsic characteristics between cross-spectral
features has not been explored. Therefore, existing methods
typically cause misleading information dominated VI-ReID
with poor performance.

We argue that by identifying a color space with jointly
modelling the color information of the visible light and the
radiation intensity of the infrared wave, cross-modality align-
ment can be facilitated by the adaptive capacity to modality
discrepancies. It helps alleviate the information asymmetry
across modalities, essentially contributing to the reduction
of modality discrepancies. To this end, we first revisit the
essence of different color spaces. HSV color space represents
colors based on their hue, saturation, and value components,

providing a more intuitive representation of color compared
to the RGB color space. In HSV color space, the H and S
channels can be employed to describe the color information
of the visible light, while the V channel can be developed to
characterize thermal radiation intensity. Based on the above
observation, we argue that the compensation for the asym-
metry of both modalities within the HSV space is the key
to effectively alleviating cross-modal differences. In addition,
to address the potential information corruption that arises from
the data-level alignment and compensating, fine-grained local
consistency constraints should be designed to improve the
cross-modality intra-class consistency.

From this point, we propose a novel Dual Modality-aware
Alignment (DMA) model by jointly exploring a Dual Modality
Transfer (DMT) module and an Intra-local Alignment (IA)
module for visible-infrared person re-identification. To align
the visible images and infrared images in an information-
symmetric domain, DMT module is proposed to facilitate the
adaptive capacity of DMA to both modalities based on the
local-level alignment. It converts visible images and infrared
images to HSV color space, and then performs alignment
based on the intrinsic characteristics of both modalities.
As shown in Figure 2(d), our method can intuitively reduce the
modality discrepancy without corrupting discriminative infor-
mation. Furthermore, to suppress the misleading information,
IA module introduces an intra-local center-based objective
function, which effectively explores the modality-common
intra-local features of both modalities. The main contributions
of our work can be summarized as follows:

• We propose a novel Dual Modality-aware Alignment
(DMA) model for visible-infrared person re-identification,
which preserves discriminative modality-common information
and suppresses the misleading information within a uniform
scheme.

• A Dual Modality Transfer (DMT) module is proposed
to reduce the cross-modality discrepancy in HSV color space.
It effectively preserves discriminative information based on the
intrinsic characteristics of both modalities, and facilitates the
adaptive capacity of DMA to modality discrepancies.

• We design an Intra-local Alignment (IA) module to fur-
ther suppress the misleading information, while exploring the
modality-common features. A fine-grained local consistency
objective function is designed to achieve more compact cross-
modality intra-class representations.

The rest of this paper is organized as follows: Section II
gives a brief review of related work about visible-infrared
person re-identification. Section III presents the pipeline of
the proposed DMA. Section IV shows the details, results, and
analysis of the experiment. Section V concludes the paper.

II. RELATED WORK

A. Visible-Infrared Person ReID (VI-ReID)

Person re-identification (Re-ID) plays an important role in
security monitoring, lost person search, and intelligent system.
Some methods [3], [17], [18], [56], [59] learned modality-
irrelevant representations to reduce the modality discrepancy.
Recently, Wu et al. [56] proposed a local pattern alignment-
based pipeline to alleviate the modality discrepancy and
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discover the nuances in different patterns. Zhang et al. [59]
proposed a modality-specific information extraction frame-
work to generate modality-specific features for potential key
information missing. To intuitively reduce the modality dis-
crepancy, some methods [13], [14], [15], [16] introduced
GAN [61] to generate fake images at the image level.
Wang et al. [14] proposed a CycleGAN-based [55] VI-ReID
method to transform images into a unified domain for training
and inference. Choi et al. [16] further improved the image
transformation by disentangling identity-relevant and identity-
irrelevant features. However, these methods are not always
reliable due to the introduction of unavoidable generated
noises.

B. Data-Level Alignment in VI-ReID

Data-level Alignment is a commonly-used technology in
VI-ReID which can greatly improve its robustness. Some
methods [51], [53], [62], [63] defined or generated a mediate
modality at the global level. Ye et al. [62] proposed a channel
augmentation method for VI-ReID. It randomly replaces the
RGB image with a random channel to bridge both modalities.
A gray-scale image-based data augmentation method is pro-
posed in [53], which introduces a homogeneous augmented
tri-modal learning method for multi-view retrieval. However,
limited by the low quality and variety of the generated images,
these methods generally have poor performance and efficiency.
In contrast, local-level data augmentation methods enhance
local discrimination. Zhong et al. [64] proposed a random
erasing augmentation strategy, which facilitates local discrim-
inative information in VI-ReID. Josi et al. [65] proposed a
patch-based data augmentation method based on multi-modal
image patches exchange, which improved the representation
of invariant features.

However, existing data-level alignment methods mostly
reduce the modality discrepancy and meanwhile suppress the
most discriminative modality-common information. In this
paper, we propose a Dual Modality Transfer module to
perform local-level augmentation based on intrinsic character-
istics of both modalities in the HSV color space and preserve
the integrity of the discriminative information.

C. Color Space

To enable efficient storage and processing of images, var-
ious color spaces (i.e., RGB, YUV, and HSV) have been
designed for specific applications [69]. Existing ReID methods
are typically based on RGB color space [3], [70]. How-
ever, it hardly describes the influence of luminance, hue,
and saturation in an intuitive way, thus suppressing the dis-
crimination when performing data-level alignment. Therefore,
some methods combine different color spaces to improve the
performance of ReID systems. Tan et al. [80] focused on
reducing the modality discrepancy caused by reflection coeffi-
cients of materials, and proposed a data augmentation method,
called RFM, which randomizes the values in RGB channels.
Nanni et al. [71] proposed an ensemble ReID system, which
combines multiple color spaces to improve the robustness
and effectiveness for multiple scenarios. Han et al. [72]

proposed to combine histograms from multiple color spaces
and improve the discriminative power for ReID systems.
To overcome the clothing color over-fitting problem in VI-
ReID, Zhao et al. [83] designed an HSV-based transformation
method, which performs random data augmentation on visible
images by parsing human bodies. However, the dependence
on external knowledge and commonly designed modules limit
the full development and utilization of the HSV color space.

Different from the above methods, in this paper, we propose
a novel data-level alignment method, called DMA, which
focuses on reducing the cross-modality discrepancy caused
by the intrinsic characteristics of both visible and infrared
modalities. It performs alignment in HSV color space to
intuitively complement the lacking information in both modal-
ities, thereby preserving the discrimination while reducing the
modality discrepancy.

III. DUAL MODALITY-AWARE ALIGNMENT

In this section, we detail our proposed DMA method. First,
the problem definition of VI-ReID is illustrated. Then, the
details of the proposed DMA are presented.

A. Problem Formulation

VI-ReID aims to match the same person across different
modalities. Formally, let xv

∈ V and xr
∈ R denote visible

and infrared images respectively. yv
∈ Yv and yr

∈ Yr denote
the corresponding ground truth identity labels. Given a query
of a person image qv or qr , the goal is to match the same
person based on the similarity distance between the query
image qv (qr ) and images in the gallery set gr (gv).

The framework of the proposed Dual Modality-aware Align-
ment (DMA) model is shown in Figure 3, which mainly
consists of two components, the Dual Modality Transfer
(DMT) module and the Intra-local Alignment (IA) module.
Concretely, visible images and infrared images are first fed
into the DMT module to generate aligned images. Then,
a single-stream backbone network is employed to generate a
deep embedding for each input image. Finally, the Intra-local
Alignment (IA) module is further exploited to align intra-local
features.

B. Single-Stream VI-ReID Backbone

As shown in Figure 3, the backbone network of our pro-
posed DMA is a single-stream network for both visible and
infrared modalities. Given the input image x , DMA embeds
x from both modalities to a same feature space and generates
a deep embedding v ∈ Rd based on Global Average Pooling
(GAP) and Batch Normalization (BN) [3], where d denotes the
number of feature dimensions. An identification loss Lid [3]
and a metric loss Lme [58], including an Euclidean constraint
and a KL-divergence constraint, is employed to optimize the
backbone network. By minimizing the above objective func-
tions, DMA can preliminary preserve discriminative identity
features.
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Fig. 3. The framework of our proposed Dual Modality-aware Alignment (DMA) model. The Dual Modality Transfer (DMT) module is proposed to perform
local-level data alignment in HSV color space based on intrinsic characteristics of both modalities, and thus preserve the integrity of the discriminative
information. Then, the Intra-local Alignment (IA) module calculates the intra-local feature-based distance of the given aligned images for exploring the
modality-common features.

C. Dual Modality Transfer

The goal of the Dual Modality Transfer (DMT) module is to
align images of both modalities in HSV color space based on
their intrinsic characteristics and facilitate the adaptive capac-
ity of DMA to modality changes. Specifically, visible images
have a wider variety of hue and saturation, while infrared
images typically have higher thermal radiation response in
pedestrian-dominant regions. An intuitive solution [80] is to
perform a random linear transformation on both modalities.
However, directly exploiting RGB images for the above align-
ment is quite challenging. Therefore, DMT first transfers
visible images and infrared images into the HSV color space,
and performs dual modality transfer based on its intrinsic char-
acteristics. Notably, all alignment operations in this section are
normalized into [0, 1] and are performed at the pixel level.

Specifically, we design a local-level data alignment strategy
by directly modifying the hue (H), saturation (S) and lumi-
nance (V) maps based on image patches. The main idea is to
randomly select an image patch and replace the original pixel-
wise H, S, and V values by combining a directed random
value in proportion. Formally, we first convert the original
image of both modalities from RGB color space into HSV
color space, where the RGB three channels of infrared images
are stacked with the same gray-scale value. The calculation
can be formulated as follows:

H =
1
6

×


0, mx = mi
((G − B)/1) mod 6, mx = R
(B − R)/1 + 2, mx = G
(R − G)/1 + 4, mx = B,

(1)

S =

{
0 , mx = 0
1/mx , mx ̸= 0,

(2)

V = mx, (3)

where R, G, and B denote 3-channel maps in RGB color
space. H , S, and V denote the corresponding map in HSV
color space. mx and mi denote the maximum and minimum
values in RGB color space. 1 denotes the disparity of mx and
mi . Then, given the converted image t , we randomly crop and
augment one of its patches t̃ .

To reduce the modality discrepancy, DMT randomly
increases the luminance of patches from visible images while
randomizing the infrared ones. The transferred luminance map
Vt̃ can be formulated as follows:

Vt̃ =

{
(1 − α) · Vt̃ + α · f (1, 1/mx(Vt̃ )), t̃ ∈ V
(1 − β) · Vt̃ + β · f (0, 1), t̃ ∈ R,

(4)

where α denotes the random gain coefficient of the map V . β

denotes the balance coefficient. f (a, b) denotes a random
number generator within [a, b]. mx(Vt̃ ) denotes the maximum
value of V . Among them, f (1, 1/mx(Vt̃ )) can promote the
luminance of visible images to minimize the discrepancy of the
luminance. Particularly, DMT exploits balanced randomization
instead of reducing the luminance of infrared images. This is
because aligning two modalities bidirectionally results in a
larger modality discrepancy, and Eq. 4 avoids such potential
discrepancy by effectively balancing the original image with
random diversity.

Considering the lack of saturation and hue information in
infrared images and the limited diversity of visible images,
DMT randomizes the saturation and hue of images in both
modalities. The augmented luminance map St̃ and the hue
map Ht̃ can be formulated as follows:{

St̃ = (1 − β) · St̃ + β · f (0, 1)

Ht̃ = f (0, 1),
(5)

where β denotes the random coefficient of S, which is the
same with that in Eq. 4. Finally, the transferred maps Ht̃ , St̃
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and Vt̃ are merged together at the channel level. The inverse
process of Eq. 1, 2 and 3 are then exploited to further generate
the augmented results. Furthermore, DMT achieves diverse
and robust data-level alignment by repeating the above process
for 5 times.

Discussion. LTG proposed in RFM [80] is one of the
most relevant methods to our proposed DMT. Compared
with LTG, our proposed DMT is different from LTG in the
following two main aspects: 1) The color space adopted by
our proposed DMT is more reasonable and effective. The
LTG module proposed in RFM uses the RGB color space
to alleviate cross-modal discrepancies. However, due to the
different intrinsic optical properties of both modalities, neither
RGB nor gray-scale color space can effectively handle this
issue due to the information asymmetry. To this end, our
proposed DMA performs compensation for the information
asymmetry in HSV color space, thereby effectively alleviating
cross-modality discrepancies and better preserving discrimina-
tive identity features. 2) The augmentation process designed
in our proposed DMT is guided by specific modalities. The
augmentation strategy of LTG is a stochastic process. How-
ever, our DMT introduces a differential strategy for different
modalities, which can better perform dual modality transfer
based on the intrinsic characteristics of both modalities.

In summary, DMT performs dual directional data-level
alignment based on the intrinsic characteristics of visible and
infrared modalities. Therefore, it preserves the discrimination
while intuitively reducing the cross-modality discrepancy.

D. Intra-Local Alignment

Although DMT can encourage the adaptation to cross-
modality changes, it can still introduce potentially misleading
intra-local information, e.g., inappropriate edges or textures,
which may typically dominate VI-ReID. Therefore, the Intra-
local Alignment (IA) module is proposed to exploit and align
the differential intra-local information, and further improve the
cross-modality intra-class consistency.

Specifically, we design an objective function to align the
intra-local features. Let f v , f r

∈ Rw×h×d be the feature
maps of visible image xv and infrared image xr before GAP,
where w and h denote the width and the height of f v and f r .
Inspired by [56], we split f into 6 horizontal parts (represented
as N) and get separate feature blocks f v

= [bv
1, bv

2, . . . , bv
N ]

and f r
= [br

1, br
2, . . . , br

N ], where bv
i and br

i indicate the i th
part feature of the visible and infrared images. Sequentially,
we further split bi into more fine-grained parts at channel level
and get L intra-local feature blocks bv

i = [uv
i,1, uv

i,2, . . . , uv
i,L ]

and br
i = [ur

i,1, ur
i,2, . . . , ur

i,L ]. The calculation of the intra-
local alignment loss Lia can be formulated as follows:

Lia =
1
N

·
1
L

N∑
i=1

L∑
j=1

(||ur
i, j − cv

i, j ||2
+ ||uv

i, j − cr
i, j ||2

), (6)

where ci, j rep(resents the heterogeneous center vector of all
the ui, j within a training batch, which has the same identity
label with ui, j .

Our proposed IA module is an improvement to the existing
center-loss based objective functions [20], [23], [56], [59],

[80]. It performs further subdivisions at the part-level and
the channel-level, which suppresses the potentially misleading
intra-local information brought by DMT, and brings more
compact intra-class representations. Sequentially, it aligns
cross-modal consistent information by further pulling in the
cross-modal intra-local information. Benefiting from the het-
erogeneity of intra-class information, Lia can suppress the
misleading intra-local features that only exist in a single
modality while exploring the modality-common features, thus
achieving more compact intra-class representations.

E. Training and Inference

In the training phase, our proposed DMA is optimized by
minimizing a multi-task loss L, which can be formulated as
follows:

L = Lid + Lme + λ · Lia, (7)

where λ is a hype-parameter. Lid , Lme, and Lia represent
the identification loss, the metric loss, and the intra-local
alignment loss.

For inference, only the embedding v is kept for VI-ReID,
while DMT and IA modules are removed. Therefore, our
proposed DMA does not bring any extra costs for inference.

IV. EXPERIMENTS

A. Datasets and Evaluation Protocols

1) Datasets: We evaluate our method on several widely-
used benchmark datasets: SYSU-MM01 [17] and RegDB [37].
SYSU-MM01 is a large-scale VI-ReID dataset, which is
collected by 4 visible cameras and 2 infrared cameras. It con-
tains 29,033 visible images and 15,712 infrared images of
491 identities. Among them, 22,258 visible images and 11,909
infrared images of 395 identities are served as training set,
3803 infrared images are served as query set, and 301/3010
randomly sampled visible images are served as gallery set for
single-shot/multi-shot testing modes. We verify our DMA in
both all-search and indoor-search scenarios with single-shot
and multi-shot testing modes. RegDB contains 8,240 images of
412 identities. Among them, 206 identities with 4,120 images
are served as training set, the rest are served as query set and
gallery set for both Visible to Infrared and Infrared to Visible
testing modes.

2) Evaluation Protocols: Following conventions in
VI-ReID community, we evaluate our proposed methods with
Cumulative Matching Characteristic (CMC, also denoted as
R@k) curves, the mean Average Precision (mAP), and the
mean Inverse Negative Penalty (mINP) [3]. We calculate R1
and mAP to comprehensively evaluate our proposed method.
For SYSU-MM01, we randomly select the gallery set for
10 times to obtain stable re-identification results for a fair
comparison.

B. Implementation Details

We implement our proposed DMA with PyTorch and train
it on one NVIDIA A40 GPU with 48G memory. We use the
commonly-used ResNet-50 [33] pretrained on ImageNet [38]
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS ON SYSU-MM01 AND REGDB DATASETS. THE BEST RESULTS ARE BOLDED

as our backbone network. All images are resized into 384 ×

192. For the infrared image, we repeat and stack it into the
3-channel image. In the training phase, we adopt randomly
flipped and erased with 50% probability for data augmentation.
We use SGD to optimize the model with weight decay set
to 5 × 10−4. The initial learning rate is set to 0.01, which
decays at the 80th and 140th epochs with a decay factor of
0.1. The learning rate of the pre-trained weights is set to 0.1 of
the others. The coefficients α and β are set to 0.1 and 0.5,
respectively. The hyper-parameter λ is set to 0.05. The batch
size is set to 64 comprised of 8 identities with 4 visible images
and 4 infrared images for each identity.

C. Comparison With State-of-the-Art Methods

We compare our proposed DMA with some state-of-
the-art (SOTA) VI-ReID methods, including Zero-Pad [17],
cmGAN [40], D2RL [13], Hi-CMD [16], JSIA-ReID [15],
AlignGAN [14], XIV [51], DDAG [25], HAT [53],
NFS [54], CICL+IAMA [83], cm-SSFT [19], CM-NAS [74],
MCLNet [75], SMCL [76], FMCNet [59], AGMNet [81],
MPANet [56], MAUM [60], CIFT† [58], RFM [80], and
DEEN [82]. Among them, CIFT† [58] follows the same setting
as others without re-ranking.

The experimental results are shown in Table I. On SYSU-
MM01 dataset, our proposed DMA outperforms all the SOTA
methods on all average criteria. Our DMA achieves 74.57%
R1 accuracy and 70.41% mAP accuracy in the most chal-
lenging single-shot all-search mode, and achieves 82.85% R1
accuracy and 85.10% mAP accuracy in the indoor-search.

For the multi-shot mode, our DMA also superior to existing
methods, especially in the indoor-search mode, which achieves
91.33% on R1 accuracy and 80.49% on mAP accuracy. The
above results indicate that our DMA can effectively facilitate
the retrieval of more positive people in various settings.
On RegDB dataset, our DMA surpasses all SOTA methods,
which achieves 93.30% and 91.50% in Visible to Infrared and
Infrared to Visible settings. In summary, our DMA achieves
the best mAP results (88.34% and 86.80% in Visible to
Infrared and Infrared to Visible settings) and surpasses all
SOTA methods.

Besides, we compared the computational consumption
of our DMA with existing open-source methods on SYSU-
MM01 dataset. As shown in Table III, our method requires
a total of 24.3M parameters and 9.2G FLOPs. Furthermore,
it can be seen that the training time and testing time
of our method are moderate in both training and testing
phases (taking 21h and 10s for training and inference
respectively). It illustrates that our method can achieve
the SOTA performance compared with existing methods
at a comparable computational consumption. The above
experimental results show that our DMA has a moderate
computational consumption comparable to existing methods.

The superiority of our DMA can be attributed to two
aspects. First, DMA effectively preserves discriminative
information by performing data-level alignment in HSV
color space. Second, the misleading information is further
suppressed by the alignment of intra-local features. Our
DMA achieves the best VI-ReID performance and reduces
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TABLE II
ABLATION STUDIES ON SYSU-MM01 DATASET IN THE ALL-SEARCH

MODE. THE BEST RESULTS ARE BOLDED

TABLE III
COMPUTATIONAL CONSUMPTION COMPARISON ON SYSU-MM01

DATASET. THE MEMORY (PARAMS) CONSUMPTION, THE TIME
(FLOPS) CONSUMPTION, THE TRAINING AND INFERENCE

TIME ARE REPORTED

TABLE IV
COMPARISON WITH EXISTING DATA-LEVEL ALIGNMENT METHODS ON

SYSU-MM01 DATASET IN THE ALL-SEARCH MODE. THE BEST
RESULTS ARE BOLDED

the cross-modal discrepancies by balancing the above two
advantages. Overall, the above results strongly verify the
effectiveness of our proposed DMA.

D. Ablation Study

In this section, we conduct detailed ablation studies on
SYSU-MM01 dataset in the all-search mode to evaluate each
component of our DMA, including DMT and IA. The results
are shown in Table II.

1) Baseline: We adopt the backbone network introduced in
Section III-B as our baseline method.

2) Effectiveness of the Dual Modality Transfer: Compared
with the baseline model, the Dual Modality Transfer mod-
ule improves the R1 accuracy, mAP, and mINP by 1.75%,
1.44%, and 1.44%, respectively. It indicates that DMT module
effectively suppresses the modality discrepancy and improves
the VI-ReID performance. The improvement can be mainly
ascribed to two reasons. For one, DMT effectively reduces the
modality discrepancy by incorporating cross-modality intrinsic
characteristics, and bridging both modalities in the HSV color
space intuitively. For the other, DMT comprehensively pre-
serves discriminative information while performing the above
bridging, thereby encouraging the adaptation to cross-modality
changes.

3) Effectiveness of the Intra-local Alignment: Compared
with the baseline model, the Intra-local Alignment module

TABLE V
COMPARISON WITH DIFFERENT BASELINE ON SYSU-MM01 DATASET IN

THE ALL-SEARCH MODE. THE BEST RESULTS ARE BOLDED

brings improvements of 1.34%, 0.88%, and 0.54% on R1
accuracy, mAP accuracy, and mINP respectively. Besides,
based on the baseline with DMT, our IA module brings a
0.75% improvement on mINP accuracy. This indicates that
our IA module reduces the overall cost to find all the correct
matches by minimizing the distance between positive samples
belonging to the same person, thereby improving the intra-
class consistency. The complete version of our DMA achieves
the best results on SYSU-MM01 dataset in the all-search
mode, achieving a gain of 2.74% and 2.29% on R1 accuracy
and mAP, which verifies the effectiveness of DMA.

E. Comparison With Different Baseline Network

First, we verify the effectiveness of our proposed DMA
with different baselines. Among them, Baseline1 represents
the naive baseline network reproduced by us in [80], Baseline2

represents our baseline network introduced in Section III-B.
As shown in Table V, our proposed DMA has achieved certain
improvements in both two baseline networks. Specifically,
DMA improves Baseline1 by 6.12% and 5.28% on R1 and
mAP accuracy, while improving Baseline2 by 2.74% and
2.29% on R1 and mAP accuracy. It can be seen that our
DMA has a greater improvement over the naive baseline. The
reason is that the naive baseline lacks sufficient constraints at
the feature-level, while our DMA obtains more compact intra-
class representations through dual modality-aware alignment
at the data-level and the feature-level, thereby significantly
improving its performance. On the other hand, our method
can also achieve significant improvements when using our
baseline network (Baseline2). This is mainly due to our DMA
reducing the modality discrepancy through the utilization of
cross-modality intrinsic characteristics. Besides, we compared
DEEN [82] (one of the SOTA methods) with Baseline2 under
the same experimental setting for further analysis. It can be
seen that the performance improvement of DEEN (+1.46%
on R1 accuracy) is lower than that of our DMA (+2.74% on
R1 accuracy). This is because DEEN did not pay attention to
the modality discrepancies caused by cross-modality intrinsic
characteristics, while we utilize the above characteristics to
perform data-level alignment in HSV color space, thus achiev-
ing better performance. In summary, our DMA has strong
generalization ability on different baselines, and achieves the
SOTA performance on the baseline we introduced.

F. Comparison With Existing Data-Level Alignment Methods

We compare the proposed DMT module with several
existing data-level alignment methods, including a global-
level alignment method (i.e., CA [62]) and three local-level
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Fig. 4. Visualization of DMT. Each column represents the results of the same person. The first row contains the input visible images and infrared images.
The last row contains results generated by our DMT module. The others contain results generated by the corresponding methods.

Fig. 5. Visualization of DMA. For each row, we show the results of the
same person using Grad-Cam [73]. (a) and (d) are the input RGB images and
the infrared images, (b) and (e) are the corresponding heatmaps generated by
DMA, and (c) and (f) are those generated by the baseline method.

alignment methods (i.e., S-PATCH [66], M-PATCH [65], and
LTG [80]). For a fair comparison, all the existing methods
are compared under the same settings that consist of the
Baseline and our proposed IA module. As shown in Table IV,
our proposed DMT outperforms all the methods mentioned
above, which surpasses CA [62] by 0.62% on R1 accuracy
and 1.01% on mAP accuracy, and meanwhile achieves the
same superiority over existing local-level alignment methods.

TABLE VI
COMPARISON WITH CROSS-CENTER LOSS ON SYSU-MM01 DATASET IN

THE ALL-SEARCH MODE. THE BEST RESULTS ARE BOLDED

It indicates that our DMT can preserve more discriminative
information, thereby achieving higher VI-ReID performance
against modality discrepancies.

G. Comparison With Existing Cross-Center Loss

One of the most relevant alignment methods to our IA
module is the cross-center loss proposed in [80]. To verify
the effectiveness of our proposed IA module, we conduct
experiments to compare the effects of the cross-center loss and
IA module on SYSU-MM01 dataset. As shown in Table VI,
under the same basic setting (“Baseline+DMT”), the intro-
duction of the basic center loss (C) resulted in a certain
degree of performance degradation, while the cross-center
loss (CC) improves the R1 and mAP accuracy by 0.5% and
0.44%. What’s more, our proposed IA module surpasses the
basic setting by 0.99% and 0.85% on R1 and mAP accuracy.
It indicates that the subdivisions of the feature vectors in
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Fig. 6. The effects of hyper-parameters λ and L on SYSU-MM01 dataset in
the all-search mode, which are shown in (a) and (b), respectively. R1 accuracy
(%) is reported.

Fig. 7. The effects of coefficients α and β on SYSU-MM01 dataset in the
all-search mode, which are shown in (a) and (b), respectively. R1 accuracy
(%) is reported.

our IA module can more effectively suppress the potentially
misleading intra-local information brought by DMT. As a
result, our proposed IA module brings more compact intra-
class representations, which CC can hardly cover due to the
lack of representation granularity. The above performance
improvement mainly benefits from further subdivisions at the
part-level and the channel-level, which facilitates stronger fine-
grained representation and alignment capabilities. Therefore,
our IA module obtains a more fine-grained intra-local repre-
sentation within the local region.

H. Visualization Analysis

1) Visualization Analysis of the DMT Module: To intuitively
verify the effectiveness of our Dual Modality Transfer (DMT)
module, we visualize and analyse the data alignment results
directly. An intuitive visualized comparison of DMT with
other data-level alignment methods [62], [65], [66], [80] is
shown in Figure 4. It can be seen that the results generated by
CA [62] (2nd row) and S-Patch [66] (3rd row) can hardly elim-
inate cross-modality intrinsic characteristics and thus maintain
the cross-modality discrepancy, while M-Patch [65] (4th row)

Fig. 8. The t-SNE [68] visualization of features on SYSU-MM01 dataset.
The colors represent different identities, while the circles and the triangles
represent visible features and infrared features, respectively. (a) and (b) are
the results generated by our DMA w/o and w/ IA module.

compromises such issues by corrupting the discriminative
information in the visible image, e.g. body shape, skeleton
structure, etc. Moreover, LTG [80] (5th row) greatly obscures
the fundamental information of the image, which prevents the
model from learning key discriminations that can distinguish
different people. In contrast, our DMT module (the last row)
can better reduce the modality discrepancy without corrupting
discriminative information compared with existing methods.

Subsequently, we conducted a statistical analysis to investi-
gate the reduction of modal differences. We randomly sampled
100 pairs of visible images and infrared images and computed
their respective HSV histograms both before and after under-
going processing by the DMT module. The results are depicted
in Figure 9. Upon observation, it becomes apparent that the
original visible images lack hue and saturation information
present in the infrared images, while the infrared images excel
in capturing radiation information compared to the visible
images. However, following the application of the DMT mod-
ule, the aforementioned information is mutually compensated,
effectively eliminating the cross-modality discrepancies. Fur-
thermore, to verify the necessity of the retained information for
VI-ReID, we apply Grad-Cam [73] to visualize discriminative
regions by exploring them on the images. As shown in
Figure 5, it can be observed that DMT can facilitate the
perception and the alignment of discriminative information,
e.g., legs, shoulders, feet, etc.
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Fig. 9. The comparison of HSV histograms between original visible (infrared) images and images after using DMT. v and f represent levels of different
channels and their frequencies, respectively. a, b, and c represent the histogram statistics of the three channels (H, S, and V, represented as orange, green, and
blue). 1, 2, 3, and 4 represent the original visible image, the original infrared image, the visible image after using DMT and the infrared image after using
DMT, respectively.

Fig. 10. Visualization of our DMA (Ours) and the baseline algorithm (B/L) on SYSU-MM01 dataset. The Rank-1 to Rank-10 results under different luminance
levels are presented, where green and red boxes indicate correct and incorrect ReID results, respectively.

Fig. 11. Visualization of our DMA (Ours) and the baseline algorithm (B/L) on SYSU-MM01 dataset. The Rank-1 to Rank-10 results under different hues
and saturations are presented, where green and red boxes indicate correct and incorrect ReID results, respectively.

2) Visualization Analysis of the IA Module: Similarly,
to further verify the effectiveness of our Intra-local Alignment
module, we use t-SNE [68] to visualize cross-modality features
before and after using IA module. As shown in Figure 8, the
features extracted by DMA after using IA are more tightly
within the same class, retaining more discrimination between
different classes. The above results indicate that our DMA

can preserve more discriminative information, which can be
further aligned by IA to achieve cross-modality alignment.

3) Visualization Analysis of the DMA Pipeline: Finally,
we visualize and analyse the ReID results compared with
the baseline algorithm to evaluate the overall performance of
our proposed DMA model. As shown in Figure 10, compared
with the baseline method, our DMA can match people more
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accurately under different ambient and clothing brightness.
Besides, as shown in Figure 11, our DMA helps to extract
modality-irrelevant representations in the absence of color
information in infrared images. The above results support that
the proposed DMA can effectively reduce the cross-modality
discrepancy caused by the intrinsic optical properties of both
modalities

Based on the above experiments, it can be concluded
that the DMT module effectively reduces the cross-modality
discrepancy, while the IA module sequentially suppresses
misleading intra-local information, resulting in more compact
intra-class representations. These experiments further verify
the effectiveness of our DMA for VI-ReID.

I. Hyper-Parameters Analysis

We first evaluate the effect of the hyper-parameter λ in
Eq 7 on SYSU-MM01 dataset in the all-search mode. The
R1 accuracy and the mAP results of DMA with different
λ are shown in Figure 6 (a). The most suitable parameter
setting is to set λ as 0.05, which indicates that a certain
degree of the alignment of intra-local features can improve
the intra-class consistency. Next, we evaluate the impact of
the number of intra-local feature blocks (L). Considering that
the length of the feature vector output by ResNet-50 is 2048,
we select (L) as a power of 2 to achieve the average division
of intra-local feature blocks. As shown in Figure 6 (b), our
DMA achieves the best overall performance on R1 accuracy
and mAP accuracy when L reaches 8. This indicates that an
excessive or slight L will make it difficult to learn alignment
information. However, our DMA achieves the best overall
performance by adopting the most appropriate L . Sequentially,
we compare the performance of DMA with different α and β

in Eq 4 and Eq 5. As shown in Figure 7, with α increasing, the
performance keeps improving before α arrives to 0.1. This is
because an excessive α will corrupt the most discriminative
information in RGB images. Besides, it can be observed
that when β is set to 0.5, DMA achieves the best overall
performance. This is because β equally balances the original
image information with the alignment to a certain degree. The
above results further verify the effectiveness of our method.

V. CONCLUSION

In this paper, we proposed a novel Dual Modality-aware
Alignment (DMA) model for VI-ReID method, which is a
uniform scheme to preserve discriminative information and
suppress the misleading information. We first analyzed the
essential factors to the generation of modality discrepancies.
A Dual Modality Transfer (DMT) module is designed to
perform data-level alignment in HSV color space based on the
intrinsic characteristics of both modalities. It can effectively
facilitate the adaptive capacity to modality discrepancies.
An Intra-local Alignment (IA) module is further proposed
to suppress the misleading information by introducing a
fine-grained local consistency objective function, which can
help to explore the modality-common intra-local features of
both modalities. Extensive experimental results on several

benchmark datasets demonstrate that our DMA can achieve
state-of-the-art performance.

In the future, we will explore how to select or jointly
utilize more suitable color spaces to implement VI-ReID
across various color spaces, such as YUV, CMYK, etc., while
reducing the computational consumption. Second, we will
explore VI-ReID under the continual learning scenario.
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