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Abstract—Existing visual instance retrieval (VIR) approaches attempt to learn a faithful global matching metric or discriminative

feature embedding offline to cover enormous visual appearance variations, so as to directly use it online on various unseen probes for

retrieval. However, their requirement for a huge set of positive training pairs is very demanding in practice and the performance is

largely constrained for the unseen testing samples due to the severe data shifting issue. In contrast, this paper advocates a different

paradigm: part of the learning can be performed online but with nominal costs, so as to achieve online metric adaptation for different

query probes. By exploiting easily-available negative samples, we propose a novel solution to achieve the optimal local metric

adaptation effectively and efficiently. The insight of our method is the local hard negative samples can actually provide tight constraints

to fine tune the metric locally. Our local metric adaptation method is generally applicable to be used on top of any offline-learned

baselines. In addition, this paper gives in-depth theoretical analyses of the proposed method to guarantee the reduction of the

classification error both asymptotically and practically. Extensive experiments on various VIR tasks have confirmed our effectiveness

and superiority.

Index Terms—Visual instance retrieval, online metric adaptation, hard negative samples

Ç

1 INTRODUCTION

VISUAL Instance Retrieval (VIR) generally refers to
retrieving the same-instance images for the query

instance image from a large, unordered image collection,
gallery set, based on the visual similarities between the
query probe and the gallery images. The gallery images
may be obtained from different cameras at a different time
against the query probe so that the difficulties of VIR are
mainly caused by the large and complex visual appearance
variations under various views, poses, illumination and
occlusion conditions. Owing to these challenges, VIR
remains a critical yet very challenging task in computer
vision community which plays an important role in various
research topics, e.g., image retrieval (Img-R) [1], [2], [3], [4],
person re-identification (P-RID) [5], [6], [7], and vehicle re-
identification (V-RID) [8], [9] etc.

Most attempts to VIR focus on facilitating the retrieval by
learning a discriminative matching metric [5], [6], [10], [11],
[12] or feature embedding [3], [4], [8], [9], [13], [14], [15],
[16], [17], [18] to better capture the visual similarities. In this
paper, we use the same term metric to represent both the
matching metric and feature embedding for convenience
since they are indeed interchangeable. These offline metric
learning methods typically attempt to train a faithful global

metric offline, hoping to cover the enormous visual appear-
ance variations so as to directly use it online for all testing
probes. The training data for such offline learning are gener-
ally sample pairs: a positive pair refers to two images of the
same identity, and a negative pair otherwise. These methods
usually demand a huge set of positive/negative training
pairs to facilitate learning. In practice, although it is rela-
tively easy to collect negative pairs, it is in general difficult
to obtain many positive pairs for a specific instance. There-
fore, the metrics learned from insufficient positive training
data are likely to be biased. In addition, most methods aim
to learn a positive semi-definite (PSD) Mahalanobis metric,
but it is computationally intensive to learn such a strictly
PSD metric, while ignoring the PSD constraint leads to
unstable and noisy metrics [5].

In contrast to the aforementioned methods, this paper
advocates a different paradigm: shifting part of the learning to
the online local metric adaptation. Specifically, for each online
probe at the testing time, our new approach learns a dedi-
cated local metric with a nominal computational cost. Com-
bining a global baseline with local metric adaptation
achieves an adaptive nonlinear metric. In our approach, its
online learning is special, because there are no positive
training pairs available at all for the testing probe, as its
identity is unknown.

An attractive property of our proposed method is that it
only uses negative data from a negative sample database
(NDB) for adaptation learning. We call it OLMANS for short
of Online Local Metric Adaptation from Negative Samples.
For a given testing probe, a specific subset of samples from
NDB are selected to form informative negative pairs with
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this testing probe. These utilized samples from NDB are
visually similar to the probe, but are guaranteed to have dif-
ferent identities from the probe (at least with a very large
probability). These negative samples provide effective local
discrimination for further constraining the local metric tun-
ing, by pushing away local false positives (shown in Fig. 1).
For each testing probe, our method learns a strictly PSD
local metric via solving a max-min optimization problem
efficiently. Comparing to offline learning schemes, the
computational cost of the proposed online adaptation is
negligible. Moreover, our method is generally applicable to
be used on top of any offline learned baselines without any
modification to them.

Another significant property of our proposed OLMANS
is that it is justified and backed up with a theoretical guaran-
tee to improve the performance of the underlying VIR base-
line. This paper gives in-depth theoretical analyses to well
justify our proposed method. We first prove that the novel
OLMANS guarantees the reduction of classification error
asymptotically when there are an infinite number of learn-
ing data. Then we pursue the best approximation of the
asymptotic case by using a finite number of learning data,
since we can prove that the learning objective of the pro-
posed local metric adaptation is equivalent to the optimal
approximation of the asymptotic case. In addition, we also
provide consistency and sample complexity analysis to
guarantee the generalization ability of our proposed
OLMANS. These theoretical analyses indicate that the
learned local metric is bound to improve the VIR perfor-
mance. These properties have been confirmed to be signifi-
cantly effective and practical by our extensive experiments

and comparative studies on different VIR benchmarks: P-
RID (VIPeR, GRID, CUHK03, Market1501, DukeMTMC-
reID and MSMT17) and Img-R (Oxford, Paris, ROxford and
RParis).

This paper is an extension of our previous conference
paper [19], while we have made a lot of extensions includ-
ing: 1) We extend our proposed OLMANS model to a more
general form to better fit the set-query scenario. The seman-
tic and visual similarity relationships of the given set-based
queries from the same instance are fully explored for a
robust and discriminative metric adaptation. 2) The theoret-
ical analyses with a thorough proof of our OLMANS are
completely presented in Section 4, which theoretically guar-
antee the correctness of our proposed method. 3) We com-
pare our method with the widely-used online re-ranking
technique since both our OLMANS and re-ranking methods
are applied to the offline learned VIR baselines on online
stage for further performance boosting, while our OLMANS
outperforms re-ranking in both the performance and effi-
ciency. 4) We evaluate our OLMANS on two generic VIR
tasks: person re-identification and image retrieval. Com-
pared with [19] which only focuses on the specific P-RID
problem, the evaluation on a general image retrieval task
verifies the generalization ability and effectiveness of our
method. 5) For the P-RID evaluation, more ablation experi-
ments are conducted in Section 5 to further investigate our
proposed method. In addition, unlike [19] that only uses the
handcrafted feature and small-scale P-RID datasets, we
explore more state-of-the-art deep learning-based models as
our baselines and evaluate three more challenging large-
scale P-RID benchmark datasets (CUHK03 [20] with new

Fig. 1. The overall idea of our proposed online local metric adaptation algorithm illustrated in the context of P-RID. Unlike existing offline learning-
based methods that learn a single global metric or feature embedding for all probe and gallery samples, we exploit negative samples to learn a dedi-
cated local metric for each online probe to adapt the offline learned global feature space to an instance-specific discriminative local feature space
(called OLMANS feature space). The hard negatives in NDB around the local hypersphere of the query probe are pushed far away so the final
retrieval result in OLMANS feature space is improved.
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protocol, DukeMTMC-reID [21] and MSMT17 [22]) to chal-
lenge various data conditions.

The rest of our paper is organized as follows: Section. 2
summarizes the previous works on VIR. We describe our
proposed OLMANS algorithm in Section. 3, and illustrate
its performance on many benchmark datasets in Section. 5.
In Section. 4, we theoretically analyze some important prop-
erties of our proposed algorithm.

2 RELATED WORK

2.1 Person Re-Identification

In this work, we focus more on the local metric learning-
based P-RID approaches and convolutional neural network
(CNN)-based deep feature embedding P-RID models.

Local Metric Learning. Zhang et al. [23] formulated the
P-RID problem as a local distance comparison problem to
handle the multi-modal distributions of the visual appearan-
ces. Li et al. [24] proposed the Locally-Adaptive Decision
Functions (LADF) which integrates a traditional distance
metric with a local decision rule. Pedagadi et al. [25]
employed the Local Fisher Discriminant Analysis (LFDA)
which combines the Fisher Discriminant Analysis (FDA) and
Local Preserving Projections (LPP) to exploit the local geo-
metrical information of samples. Liong et al. [26] developed a
regularized local metric learning (RLML)method to combine
global and localmetrics, so as to utilize the local data distribu-
tion to alleviate over-fitting. Zhang et al. [27] proposed
LSSCDL to learn a specific SVM classifier for each training
sample, then the weight parameters of a new sample can be
inferred. A novel multi-task maximally collapsing metric
learning (MtMCML)model was proposed by [28]. In order to
relax the large-number labeled image pair requirement in P-
RID, a novel one-shot learning approach is proposed by [10]
which only requires a single image from each camera for
training, thus the learning result is specific to the only sample.
In contrast to the localmetric learningmethods, our proposed
approach is mainly focused on learning local metrics specifi-
cally adaptive to individual testing probes. Different from
RLML that requires clustering in advance to obtain the local
data distributions, our new approach does not need cluster-
ing but is rather instance-based learning, and thus avoiding
the risk of inaccurate clustering results. Also note that
MtMCML learning still follows the globalmanner although it
learns different metrics for different cameras. In contrast to
LADF that needs a large number of positive sample pairs to
drive the local decision function learning, our new approach
only uses negative sample pairs which are much easier to
obtain. LSSCDL also requires a lot of positive training pairs
for offline learning, but ours performs online learning per
probe without the requirement of positive pairs. Although
[10] performs one-shot learning to each sample, but it needs
extra camera network information for one-shot learning.

Deep Feature Embedding. The convolutional neural network
based P-RID approaches aim to integrate the feature extrac-
tion and metric learning into one end-to-end framework, in
which a neural network is built to extract from each pedes-
trian image a feature that satisfies a certain ranking criterion.
Li et al. [20] first utilized deep learning method to extract
more effective and discriminative features to facilitate P-RID.
Ding et al. [29] proposed a scalable deep feature learning

model for P-RID via relative distance comparison based on
triplet loss. Shi et al. [30] proposed a novel moderate positive
mining method to embed a robust deep metric for P-RID.
Ustinova and Lempitsky [31] suggested a new loss for learn-
ing deep embeddings and demonstrate competitive results of
the new loss on a number of P-RID datasets. CNN-based fea-
ture extraction has achieved the state-of-the-art performance
in P-RID owning to a better spatial alignment of local image
parts. A novel Harmonious Attention CNN (HA-CNN)
proposed by [13] tries to jointly learn attention selection and
feature representation in a CNN by maximizing the comple-
mentary information of different levels of visual attention
(soft attention and hard attention). Liu et al. [32] proposed a
network called CAN which combines attention methods
with LSTM to obtain discriminative attention feature of the
whole image.Wang et al. [33] proposed a novel deeply super-
vised fully attentional block that can be plugged into any
CNNs to solve P-RID problem, and a novel deep network
called Mancs is designed to learn stable features for P-RID.
Besides the aforementioned methods, the utilization of hard
negatives attracts more and more attention in deep metric
learning area. Duan et al. [34] proposed a framework of deep
adversarial metric learning (DAML) which can be generally
applicable to various supervised metric learning approaches.
DAML aims to generate synthetic hard negatives from the
observed negative samples by exploiting what to generate
potential hard negatives adversarial to the learned metric as
complements. Lin et al. [35] proposed a novel applicable
framework named deep variational metric learning (DVML)
to disentangle intra-class variance via variational inference
and leverages the distribution to generate discriminative
samples to improve robustness. The generated negative sam-
ples could be utilized to facilitate the learning and enhance
the generalization ability of the learned model. However,
thesewell-trained networks are directly applied to the testing
data for deep feature extraction, no local adaptation is in the
loop. The data shifting between training and testing samples
definitely limits the performance of the learned models.
Therefore, our proposed OLMANS is suitable for any CNNs
for instance-specific local adaptation in the inference stage,
which can address the data shifting issue well and gain fur-
ther performance improvement.

2.2 Image Retrieval

A thorough survey of image retrieval researches is intro-
duced in [37]. In this work, we mainly focus on two main
branches of image retrieval, multiple local feature aggrega-
tion-based approaches and deep learning-based models.

Local Descriptor Aggregation. Previous image retrievalmeth-
ods aim to aggregate a set of local feature descriptors into a
global one for robust retrieval. Zhang et al. [38] designed a
graph-based ranking model to aggregate the retrieval results
from multiple features into one, then the retrieval scores are
weighted to determine the final retrieval matching. Zhang
et al. [39] proposed a novel coupled MultiIndex(c-MI) frame-
work to fuse both color feature and SIFT feature in a product
manner at indexing level. Zhang et al. [40] proposed a seman-
tic-aware co-indexing scheme to fuse the SIFT feature and
semantic attributes for image retrieval. In [41], multiple visual
features are fused in the similarity score level based on
the shapes of ranking scores. By considering these local
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descriptor aggregation methods as offline baselines, our pro-
posed OLMANS can be readily implemented on the top of
the fused feature for further local similarity adaptation.

CNN Fine-Tuning. Babenko et al. [42] demonstrated that
the pre-trained models from ImageNet for object classifica-
tion is suitable for image retrieval by fine-tuning them on
an external set of Landmarks images. Gordo et al. [43] also
confirmed the importance of fine-tuning the pre-trained
models to improve image retrieval, but argued that a good
image representation and a ranking loss should be used in
learning, instead of the classification loss. Radenovi�c et al.
[4] addressed the unsupervised fine-tuning of CNNs for
image retrieval on a large collection of unordered images in
a fully automated manner. By considering the fine-tuned
CNN as a global deep feature extractor to the probe and gal-
lery samples, our proposed OLMANS method can be read-
ily applied on top of it to further boost the performance.

2.3 Online Re-Ranking

The online re-ranking technique is widely adopted for fur-
ther performance improvement in VIR. Ye et al. [44] revised
the ranking list by considering the nearest neighbors of both
the global and local features. An unsupervised re-ranking
model proposed by [45] takes advantage of the content and
context information in the ranking list. Zhong et al. [46] pro-
posed a k-reciprocal encoding approach for re-ranking,
which relies on a hypothesis that if a gallery image is similar
to the probe in the k-reciprocal nearest neighbors, it is more
likely to be a true-match. Barman et al. [47] focused on
how to make a consensus-based decision for retrieval by
aggregating the ranking results from multiple algorithms,
only the matching scores are needed. Both our proposed
OLMANS and re-ranking share the same appealing online
manner, but our algorithm outperforms re-ranking by sev-
eral unique merits which will be discussed in Section 4.4.

3 LEARNING FROM FAILURE: ONLINE LOCAL

METRIC ADAPTATION FROM NEGATIVE SAMPLES

3.1 Problem Settings

On the online testing stage of VIR, two disjoint datasets, a
probe set P and a gallery set G are given as:

P ¼ pi; l
p
i

� �� �n

i¼1
G ¼ gi; l

g
i

� �� �m

i¼1
(1)

that pi; gi 2 Rd are the extracted feature representations
from a baseline model, either handcraft features or learned
deep features. lpi ; l

g
i 2 1; 2; . . . ; cf g are the labels from c

instances which are totally different from the training sam-
ple classes. The common-used closed-set condition is adopted
that both the P and G contain samples from all the c instan-
ces respectively. VIR aims to rank G for a query probe pi
based on the pair-wise similarity distance between a gallery
image gj, Dðpi; gjÞ ¼ kpi; gjk2. Our goal is to re-rank G for pi
by refining Dðpi; gjÞ to boost the rank of true-matches for pi
via utilizing an additional negative sample database,
denoted by Y ¼ yif gki¼1, the details about Y will be dis-
cussed shortly in Section 3.2.

3.2 OLMANS for Single-Instance Query

The performance of VIR depends on the similarity matching
between one probe pi and one gallery image gj. Different
methods adopt different loss functions to learn the feature
representations pi and gj with the expectation that the simi-
larity structure in the learned feature space should be
aligned, so as to pull the samples from the same instance
group closer and to make different instances more discrimi-
native. However, the offline learned feature embedding
from training samples does not aim to fit the local distribu-
tions for all the testing samples specifically, it may lead to
large biases and distortions in some places in the feature
space. As illustrated in Fig. 1, our proposed approach puts
an instance-specific local metric adaptation on top of the
global baselines in an online manner.

To enhance the local discriminant of query probes, in this
paper, we propose OLMANS, an online local metric adapta-
tion algorithm by exploring only negative samples, to adap-
tively adjust the metric dedicated to a specific query probe
with minimum online learning burden. Specifically, for a
probe image pi in the probe set P, we aim to learn a local
Mahalanobis distance Mi only using the samples in a nega-
tive sample database Y as learning data. This negative sam-
ple database provides rather faithful negative samples to
the probes with a large probability. There are many ways to

Fig. 2. The improvement of ranking result by our OLMANS on VIPeR [36]. BLUE boxes: input probes, RED: gallery targets. For each case, the top
row is the result from the baseline [5], and the bottom row is our result. (Best view in color and enlarged).
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collect Y, e.g., data from a different benchmark can be used,
or false positive matches from images that belong to differ-
ent instance classes. The insight here is that all such nega-
tive samples are “hard negatives” for the probes. In this
research, we have investigated how Y influences the perfor-
mance in Section 5.

We propose to pursue an optimal PSD Mahalanobis met-
ric Mi for the local adaptation of pi, by maximizing the dis-
tance to the closest (or “hardest” conceptually) negative
sample of pi, as shown in Fig. 3:

Mi ¼ arg max
Mi�0

min
1�j�k

pi � yj
� �T

Mi pi � yj
� �� �

: (2)

To pursue a stable solution to Eq. (2), we need to regular-
ize Mi. This can be done via minimizing the norm under a
fixed margin constraint, instead of maximizing the margin
under a fixed norm constraint [48], so the alternative
objective is:

Mi ¼ argmin
Mi

1

2
Mik k2

sub to : Mi � 0

pi � yj
� �T

Mi pi � yj
� � � 2; 81 � j � k;

(3)

where the constant 2 is arbitrary only for manipulation con-
venience. While this is a convex semi-definite programming
problem, it can be very slow for high dimensional data,
even for the state-of-the-art PSD solvers.

In the proposed OLMANS approach, we relax the PSD
constraint requiring Mi

L � 0, but we prove below that the
relaxed objective is equivalent to a kernel SVM problem
with a quadratic kernel. And thus the solution is still a PSD
metric. In addition, it can be readily solved with off-the-
shelf SVM solvers such as LIBSVM [49]. More importantly,
we also prove that this learning objective is equivalent to
the best approximation to the asymptotic classification
error, which is proved to be lower than the global baseline
(details see Section 4).

Theorem 1. The solution to Eq. (3) is equivalent to a kernel
SVM with kðx; yÞ ¼ x; yh i2 on ~y0; ~y1; ~y2; . . . ; ~ykf g where
~yj ¼ pi � yj (for j � 1), and ~y0 ¼ pi � pi ¼ 0.

Proof. Define auxiliary labels by:

zj ¼ �1; j ¼ 0
1; j 6¼ 0

�
(4)

so the objective Eq. (3) can be rewritten as:

Mi ¼ argmin
Mi

1

2
Mik k2

sub to : zj ~yTj Mi~yj � 1
	 


� 1; 8 0 � j � k:

(5)

Eq. (5) is exactly an SVM problem with quadratic kernel
and with bias fixed to one. Next we prove the solution to
objective Eq. (5) is exactly the same as that to the original
objective Eq. (3). Consider the dual of the SVM, the opti-
mal solutionMi has the form:

Mi ¼
Xk
j¼0

ajzj~yj~y
T
j ; aj � 0: (6)

Since ~yj~y
T
j is PSD for j � 1 ( ~y0~y

T
0 ¼ 0 ) and zj ¼ 1 for

j � 1, so we have:

Mi ¼
Xk
j¼0

ajzj~yj~y
T
j ¼

Xk
j¼1

aj~yj~y
T
j � 0: (7)

tu
It is obvious that the positive semi-definiteness of Mi is

guaranteed even if no PSD constraint is explicitly imposed
in our learning objective Eq. (5).

3.3 OLMANS for Instance-Set Query

In Section 3.2, we demonstrate our proposed OLMANS
algorithm in the context of single-instance query scenario.
However, in visual instance retrieval, there will be multi-
ple images of the same instance as the query probe, which
is known as the multi-shot query. Following our OLMANS
algorithm in Section 3.2, for each individual image of
the same instance, a local metric will be learned which is
linear to the query number n. However, such an individ-
ual-based learning manner ignores the visual similarity
relationships among the given set-based query which is
neither effective nor efficient. Therefore, for such an
instance-set query, we generalize our OLMANS algorithm
to learn a set-specific local Mahalanobis metric in order to
collapse the same-instance samples together meanwhile
push the negative samples in Y far away, as shown in
Fig. 4. For the ith instance with query set Pi ¼ fpirgnir¼1, the
designed objective for learning its specific Mahalanobis
metric Mi is:

Fig. 4. The local metric Mi for a set-based probe Pi can pull the same-
instance samples together meanwhile push the closest negative sam-
ples yj away from the local hypersphere VðPiÞ

Fig. 3. The local metric Mi for a single probe pi can push the closest
negative sample yj of pi away from its local hypersphere VðpiÞ.
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Mi ¼ argmin
Mi

1

2
Mik k2

sub to : Mi � 0

pir � yj
� �T

Mi pir � yj
� � � 2; 81 � r � ni; 81 � j � k

pir � pij

	 
T

Mi pir � pij

	 

¼ 0; 81 � r � ni; 81 � j � ni:

(8)

Therefore the learned Mi from Eq. (8) is shared by all the
same-instance samples in Pi. While there are total Oðn2Þ
constraints in Eq. (8) which is difficult to deal with, so we
aim to reduce the constraint size in Eq. (8) to facilitate
optimization.

Theorem 2. Eq. (8) has an exactly equivalent form by only keep-
ing the constraints related to one anchor sample pi in the query
set Pi, that pi can be any sample in Pi. Therefore the equivalent
form is Eq. (9):

Mi ¼ argmin
Mi

1

2
Mik k2

sub to : Mi � 0

pi � yj
� �T

Mi pi � yj
� � � 2; 81 � j � k

pi � pij

	 
T

Mi pi � pij

	 

¼ 0; 81 � j � ni:

(9)

Proof. Revisit Eq. (8), its equality constraints propose to col-
lapse all pir 2 Pi together. Therefore keeping only the
equality constraints related to the anchor sample pi

achieves the same collapsing performance. So as to the
inequality constraints in Eq. (8). Finally, we can reduce
the constraint size by only keeping the constraints related
to pi as in Eq. (9). The re-written objective Eq. (9) has only
linear-scale OðnÞ constraints, compared to the original
quadratic-scale Oðn2Þ constraints in Eq. (8). tu
An important merit of Eq. (9) is that it can be efficiently

optimized by solving a much easier version [48]:

Theorem 3. All the vectors pi � pij in Eq. (9) form a spanning
space S ¼ spanðPj �jðpi � pijÞÞ. The Eq. (9) is equivalent to
replace pi � yj by tj, the projection of pi � yj in S?, that S? is
the orthogonal space of S.

Proof. Since Mi is positive semi-definite, the constraint
ðpi � pijÞTMiðpi � pijÞ ¼ 0 is equivalent to Miðpi � pijÞ ¼ 0
which means the Mis ¼ 0 for all s 2 S. Projecting pi � yj
to S and S? generates two orthogonal bases sj and tj
respectively, so pi � yj ¼ sj þ tj. Replace the inequality
constraints in Eq. (9) by sj þ tj:

pi � yj
� �T

Mi pi � yj
� � ¼ sj þ tj

� �T
Mi sj þ tj

� �
¼ tj

TMitj:
(10)

Now Eq. (9) has an equivalent form as:

Mi ¼ argmin
Mi

1

2
Mik k2

sub to : Mi � 0

tj
TMitj � 2; 81 � j � k

Mis ¼ 0; 8s 2 S:

(11)

tu

Finally, we prove that Eq. (11) has the same solution to
Eq. (8) by eliminating its PSD and equality constraints.

Theorem 4. The solution to Eq. (8) is exactly the same as solving
the Eq. (11) by relaxing its equality and PSD constraints, since
they are indeed off-the-shelf.

Proof. If we get rid of the PSD and equality constraints in
Eq. (11), the new form is:

Mi ¼ argmin
Mi

1

2
Mik k2

sub to : tj
TMitj � 2; 81 � j � k:

(12)

Eq. (12) is exactly the same form of the objective in Eq. (5)
which can be efficiently solved via a kernel-SVM solver.
Thus the positive semi-definiteness of Mi is guaranteed
by Theorem 1. For the equality constraints in Eq. (11),
given a member s of S, we have:

Mis ¼
X

aiti � tTi
	 


s ¼
X

aiti � ðtTi sÞ ¼ 0; (13)

which proves that the solution to Eq. (12) satisfies the
equality constraints as well. tu

3.4 Visual Instance Retrieval via OLMANS

On the online testing stage, for a probe pi from P and one
gallery image gj from G, the similarity matching between pi
and gj is measured by combining the original baseline mod-
els (with flexible choices) with our local metric adaptation
Mi to achieve an adaptive nonlinear metric:

DMi
ðpi; gjÞ

¼ kpi � gjk2 þ �kpi � gjk2Mi

¼ pi � gj
� �T

Iþ �Mið Þ pi � gj
� �

;

(14)

where Mi is the learned local metric specific for pi and � is
the weighting parameter. In this paper, we set � by Eq. (15)
in all the experiments which can be explained in Section 5.

� ¼ max
1�j�m

kpi � gjk2
	 
.

max
1�j�m

kpi � gjk2Mi

	 

: (15)

We find that even simply using only the learned local
metric for retrieval, the results are still much better than
using the original global baselines. Further, when combin-
ing the global baseline and our learned local metrics, we are
able to obtain much better and more stable performances.
The reason behind it can be explained by the idea of boost-
ing [50]. Either the global baseline or the local metric can
be considered as a “weak” classifier for retrieval, and their
combination forms a “stronger” classifier with better and
more robust performance.

4 THEORETICAL ANALYSIS AND JUSTIFICATION

In this section, we first prove that the asymptotic error of
VIR by using the proposed OLMANS is bound to be lower
than that without. When the negative samples are truly
hard negative ones, the asymptotic error by using OLMANS
can be very close to the Bayesian error (Section 4.1). Besides
this theoretically meaningful result, we prove that this
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strong asymptotic error can actually best approximated by
using finite data, which is practically also meaningful. More
importantly, we prove that this approximation is actually
achieved by OLMANS (Section 4.2). We also present its con-
sistency and sample complexity analysis in Section 4.3.

4.1 Asymptotic Error Is Reduced

The core of VIR is indeed a 2-class (vþ and v�) 1-Nearest
neighbor (NN) classification problem by using the gallery
set D. If there is infinite number of data, it is well-known
that its asymptotic error PðejxÞ is bounded by 2 times the
Bayesian error [51]:

P� � PðejxÞ ¼ 2P ðvþjxÞP ðv�jxÞ � 2P�; (16)

where P� is the Bayesian error. In our work, we prove that
by adding the hard negative samples xa toD to form an aug-
mented dataset Da, the asymptotic error PaðejxÞ by using Da

is always smaller than PðejxÞ:

PaðejxÞ � PðejxÞ: (17)

Theorem 5. For an input x, its NN is x0 inDa. Define the proba-
bility that x0 is an augmented data xa, i.e., x0 	 xa as

P ðx0 	 xaÞ ¼ q; otherwise, x0 is not an augmented data xa,

i.e., x0:xa, P ðx0:xaÞ ¼ 1� q, where 0 � q � 1. The asymp-

totic error PaðejxÞ by using Da is:

PaðejxÞ ¼ ð2� qÞPðejxÞ
2� 2qPðejxÞ � PðejxÞ: (18)

The proof is provided in Appendix A, which can be

found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPAMI.2019.2918208.

Since q is the probability of P ðx0 	 xaÞ, we have 0 � q � 1. If

q ¼ 0 which indicates that the augmented negative data are

useless, then we have PaðejxÞ ¼ PðejxÞ. Another extreme is

when q ¼ 1 implying the negative data are abundant and

effective to constrain the classification, then we have1

PaðejxÞ ¼ PðejxÞ
2½1� PðejxÞ
 � PðejxÞ: (19)

In this case, when PðejxÞ is very small, we have

PaðejxÞ ’ PðejxÞ
2

’ P�ðeÞ: (20)

The asymptotic error of our negative-augmented approach

can be very close to the Bayesian error.

4.2 Finite Approximation to PaðejxÞ
The asymptotic error PaðejxÞ in Eq. (18) is only meaningful
when the sample size is infinite, n ! 1. However, in prac-
tice, only finite number of samples are available. To make it
practically meaningful, we prove that it can be best approxi-
mated by the practical error rate PnðejxÞ (n is finite) by find-
ing a local metric Mx. And this local metric turns out to be
the one for the proposed OLMANS.

Still consider the 2-class 1-NN rule scenario (on the nega-
tive augmented data Da). To make the notation less clut-
tered, here we use PðejxÞ to indicate PaðejxÞ without
confusion. Given a sample x and its nearest neighbor x0

from the finite dataset containing n samples. The probability
of error for x is:

PnðejxÞ ¼ P ðvþjxÞP ðv�jx0Þ þ P ðv�jxÞP ðvþjx0Þ
¼ PðejxÞ þ

h
P ðvþjxÞ � P ðv�jxÞ
½P ðvþjxÞ � P ðvþjx0Þ

i
:

Our goal is to find a best local metric Mx for x such that
the conditional MSE minMxEf½PnðejxÞ � PðejxÞ
2jxg is mini-

mized. Since ½P ðvþjxÞ � P ðv�jxÞ
 is constant for a given x,
so the minimization is equal to:

min
Mx

Ef½P ðvþjxÞ � P ðvþjx0Þ
2jxg: (21)

Because P ðvþjx0Þ ’ P ðvþjxÞ þ rP ðvþjxÞT ðx0 � xÞ, Eq. (21)
is approximately equivalent to:

min
Mx

EfkrP ðvþjxÞT ðx0 � xÞk2jxg: (22)

The core here is to compute the gradient of posterior
rP ðvþjxÞ. Recall our proposed OLMANS approach, a local
linear classifier w where Mx ¼ wwT is learned for a sample
x. So the posterior of x in a logistic sigmoid function form is:

P ðvþjxÞ ¼ 1

1þ ezxðwT xþbÞ�g
; P ðv�jxÞ ¼ 1� P ðvþjxÞ:

(23)

The gradient of P ðvþjxÞ can be easily computed:

rP ðvþjxÞ ¼ zxP ðvþjxÞP ðv�jxÞw: (24)

Substituting Eq. (24) forrP ðvþjxÞ in Eq. (22) gives us:

min
Mx

EfkzxP ðvþjxÞP ðv�jxÞwT ðx0 � xÞk2jxg

¼ min
Mx

ðx0 � xÞTwwT ðx0 � xÞ:
(25)

Recall our optimization objective Eq. (5), for the positive

samples, we have 1� ðx0 � xÞTMxðx0 � xÞ � 1 which is

equal to ðx0 � xÞTMxðx0 � xÞ � 0. On the other hand,

ðx� x0ÞTMxðx� x0Þ � 0 is always true for a PSD Mx, so

ðx0 � xÞTMxðx0 � xÞ � 0 always holds. It is obvious Eq. (25)
is always optimized by adopting the local metric Mx

learned by our algorithm Eq. (5).

4.3 Consistency and Sample Complexity Analysis

A set of samples fx0; x1; . . .xkg is identically drawn from a

D-dimensional space D 2 RD where li is the label of xi, then

a paired sample set Spair
k ¼ fsigki¼1 ¼ fðx0; xiÞgki¼1 of size k is

formed. For our proposed objective Eq. (5), the true risk
over the whole distribution D and the empirical error based
on Spair

k are defined as:

Err�ðMx;DÞ ¼ Exi;xj	Df
�ðMx; ðxi; xjÞÞ

Err�ðMx; S
pair
k Þ ¼ 1

k

Xk
i¼1

f�ðMx; siÞ;
1. PðejxÞ � 1

2 is always true.
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where f� Mx; sið Þ is the hinge loss function:

f�ðMx; siÞ ¼ �½zi ðxi � x0ÞTMxðxi � x0Þ
	 


� gzi

þ;

where zi ¼ �1 if li ¼ l0 and 1 otherwise, ½A
þ ¼ maxð0; AÞ is
the hinge loss and gzi

is the desired margin. The empirical
risk minimizing metric based on Spair

k can be readily defined

as M�
x ¼ argminMxErr

�ðMx; S
pair
k Þ. Our goal is to compare

the generalization performance ofM�
x over the unknown D.

Theorem 6. Let f�ðMx; siÞ be a distance-based loss function
that is �-Lipschitz in the first argument. Then with probability
at least 1� d over fs1; . . . ; skg from an unknown B-bounded-
support (each ðx; lÞ 	 D; jjxjj � B) distribution D, we have:

sup
Mx2M

Err�ðMx;DÞ � Err�ðMx; S
pair
k Þ� �

� O �B2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D lnð1=dÞ=k

p	 

:

(26)

Theorem 6 proves that to achieve an estimation error rate
�, k ¼ V ð�B2=�Þ2D lnð1=dÞ

	 

samples are sufficient. The

brief proof is shown in Appendix B, available in the online
supplemental material.

Theorem 7. LetMx be any class of weighting metrics on the fea-
ture space X ¼ RD, and define d :¼ supMx2MkMxk2F . Follow-
ing the same parameter setting in Theorem 6, we have:

sup
Mx2M

Err�ðMx;DÞ � Err�ðMx; S
pair
k Þ� �

� O �B2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d lnð1=dÞ=k

p	 
 (27)

Let P be the probability measure induced by the random
variable ðX;LÞ, where X :¼ ðx; x0Þ, L :¼ 1½l ¼ l0
. Define
function class:

F :¼ fX 7! kx� x0kMx
g:

Following the same steps in the proof of Theorem 6, we can
conclude that the Rademacher complexity of F is bounded.
In particular,

RkðFÞ � 4B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
supMx2MkMxk2F

k

s

Finally, we note that f� is �-Lipschitz in the first argument,
so that we can readily apply Theorem 8 in [52].

From Theorem 7, we observe that if the learned metric
Mx has a low metric learning complexity d � D, it can help
sharpen the sample complexity result, yielding a dataset-
dependent bound. Recall our objective Eq. (5), d :¼
supMx2MkMxk2F is already optimized via our proposed
learning objective. Therefore, the bound is further tighter
under the same number of samples.

4.4 OLMANS versus Re-Ranking

Both our proposed OLMANS algorithm and the widely-
used re-ranking technique can be readily combined with
any offline learned retrieval models in the online phase for
further performance improvement. But our OLMANS owns
more unique merits than re-ranking in both the efficiency
and effectiveness facets which has been both theoretically

proved in Section 4 and empirically verified by extensive
experiments in Section 5.

Data Requirement. Most re-ranking methods require no
additional learning samples, but utilize the given query
probe and gallery samples to help refine the ranking. In con-
trast, our OLMANS takes advantage of a set of easily-avail-
able negative samples, based on which it finds online
adaptation for the optimal local metric.

Effectiveness. The effectiveness of re-ranking depends
heavily on the quality of the initial ranking list (if the true
match is not in the top-k ranks). It may hurt the initial rank
result, because the true match may have a lower rank after
re-ranking if the false matches are included in the top-k list.
Thus re-ranking may degrade the performance. The perfor-
mance of our OLMANS model relies on the quality of the
set of negative data, as illustrated by Theorem 5, even if the
quality of the given NDB is pretty bad (no hard negatives
are provided), OLMANS still won’t degrade the original
performance. Comparing to re-ranking, our OLMANS has a
unique and plausible advantage: it does not degrade the
performance of the original methods (the original global
metric) in theory. As indicated in the objective Eq. (3), when
the negative samples are not good (i.e., they are already far
away from the positive point in the original feature space),
the learned local metric Mx will be the same as the original
baseline, since the constraints in Eq. (3) have already been
fulfilled. So OLMANS won’t give a worse performance than
the original method. As described in Section 4, our theoreti-
cal analysis has shown that asymptotically our negative-
augmented approach always improves the identification
performance, and can be very close to the Bayesian error.

Efficiency. Another merit of our OLMANS compared with
re-ranking is its high efficiency. OLMANS is very efficient
even if there are a lot of negative samples available for local
adaptation. Because the learned local metric Mx is only
related to a handful set of hard negatives, not all the nega-
tives. In contrast, other methods, such as re-ranking
(depend on data number and nearest neighbor number k),
transfer learning, domain adaptation techniques, are usu-
ally time-consuming because the affinity relationships
among probes and gallery samples have to be computed.

5 EXPERIMENTS

In this section, to verify the efficiency and effectiveness of
our proposed OLMANS method, we evaluate our method
on two generic VIR tasks: person re-identification and
image retrieval.

5.1 Experiment on Person Re-Identification

5.1.1 Experiment Settings

Data. We perform thorough experiments and comparative
studies to evaluate our method on most widely-used P-RID
benchmark datasets: VIPeR [36], GRID [53], CUHK03 [20],
Market1501 [54], DukeMTMC-reID [21] and MSMT17 [22].
The statistic details of the above datasets are summarized in
Table 1. For VIPeR and GRID datasets, all the identity pairs
are randomly divided into half for training and the other
half for testing so that the average results of 10 random tri-
als are reported. For CUHK03, the newly proposed proto-
col [46] (767 identities are used for training as well as the
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left 700 identities are used for testing) is adopted in our
experiments. As for the other three benchmarks, Mar-
ket1501, DukeMTMC-reID and MSMT17, the pre-deter-
mined probe and gallery sets are directly utilized with no
modification.

Evaluation. For a fair comparison, the training data of
each dataset are used as the negative training samples for
itself, so no more extra information is utilized in the experi-
ment. For all the experiments, the single-shot evaluation set-
ting is adopted and results are shown in the form of
Cumulated Matching Characteristic (CMC) curves. Besides,
the mean average precision (mAP) results of the latter four
benchmarks are also reported.

Feature. Both handcrafted features and learned deep fea-
tures are explored in our experiments. The high-dimen-
sional handcrafted P-RID feature called LOMO [6] is
adopted. Since it is not practical to directly use such a high
dimensional feature (26960-dim for the original LOMO fea-
ture) in metric learning, we employ principal component
analysis (PCA) to reduce the feature dimension to a reason-
able scale (1000-dim after PCA). Besides, our proposed algo-
rithm is directly applied to various CNN features presented
below for evaluation.

Baseline. Since the global metric learning-based methods
perform much better than deep learning-based ones on the
small-scale datasets VIPeR and GRID, due to the lack of suffi-
cient training data, we mainly focus on the state-of-the-art
global metric learning approaches [5], [6], [11] as our baseline
models. As for the other large-scale datasets with plenty
of training samples, the state-of-the-art CNN-based P-RID
models are selected as our baselines to implement ourmethod
on including CaffeNet [55], VGG16 [56], ResNet50 [57],

DenseNet121 [14] and HA-CNN [13]. Besides, the other state-
of-the-art P-RID methods [15], [16], [17], [18], [58], [59], [60]
are further compared for a complete evaluation. Finally, a
recently proposed state-of-the-art re-ranking approach [46] is
comparedwith our algorithm. Various ablation studies of our
proposedmodel are explored in Section 5.1.4.

5.1.2 Comparisons with State-of-the-Art

Experiments on VIPeR. The small-size VIPeR dataset is a
widely-used benchmark for P-RID which contains 632
pedestrian image pairs taken from 2 different cameras in an
outdoor environment. We conduct the comparison experi-
ment under the same experiment setting and using the
same LOMO feature, while the global metric learner
MLAPG [5] is selected as our baseline. The results are
reported in Table 2. Our method achieves the best perform-
ances on all the ranks. For the important Rank@1 evalua-
tion, our performance 44.97 percent outperforms the second
best approach LSSCDL by 2.31 percent and the baseline
model MLAPG by 4.24 percent. This promising perfor-
mance indicates that the proposed local metric adaptation
method is consistently effective, several representative
examples are shown in Fig. 2. One interesting observation
is our improvement performance at Rank@20 is a little
bit lower than its performance at Rank@1. This is expected
as our local metric becomes less effective when the true
positive gallery image is far from the probe in the feature
space. Nevertheless, our method still beats all the other
approaches at Rank@20.

Experiments on GRID. The GRID dataset [53] contains 250
pedestrian image pairs taken from 8 disjoint camera views
and 775 additional images that do not belong to the 250 per-
sons. GRID is a pretty tough dataset because of the large view-
point variations, the low-resolution image quality and the
quantitative distractors. The average performance of 10 ran-
dom trials is provided in Table 3. It can be clearly observed

TABLE 1
The Statistics of Different P-RID Benchmarks

Dataset VIPeR GRID CUHK03 Market1501 DukeMTMC MSMT17

#Train-IDs 316 125 767 751 702 1040
#Probe-IDs 316 125 700 750 702 3060
#Gallery-IDs 316 775 700 751 1110 3060
#cam 2 8 2 6 8 15
#images 1264 1025 28192 32668 36411 126441

TABLE 2
Comparison Results with the Global Metric Learning Methods

on VIPeR Using the Same LOMO Feature

Method R@1 R@5 R@10 R@20

Ours(MLAPG) 44.97 74.43 84.97 93.64

LSSCDL [27] 42.66 - 84.27 91.93
DNSL [11] 42.28 71.46 82.94 92.06
MLAPG [5] 40.73 69.94 82.34 92.37
XQDA [6] 40.00 68.13 80.51 91.08
TMA [61] 39.88 - 81.33 91.46
KISSME [62] 34.81 60.44 77.22 86.71
ITML [63] 24.64 49.78 63.04 78.39
LMNN [64] 29.43 59.78 73.51 84.91
kCCA [65] 30.16 62.69 76.04 86.80
MFA [66] 38.67 69.18 80.47 89.02
kLFDA [66] 38.58 69.15 80.44 89.15

RED is the best result and BLUE is the second best one.

TABLE 3
Comparison with the Global Metric Learning Methods

on GRID Using the Same LOMO Feature

Method R@1 R@5 R@10 R@20

Ours(MLAPG) 30.16 42.64 49.20 59.36

LSSCDL [27] 22.40 - 51.28 61.20
DNSL [11] 15.12 31.92 40.72 53.12
MLAPG [5] 17.60 33.52 43.36 56.08
XQDA [6] 12.96 26.80 34.56 43.52
EPKFM [67] 16.30 35.80 46.00 57.60
MtMCML [28] 14.08 34.64 45.84 59.84
PRDC [7] 9.68 22.00 32.96 44.32
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that our proposed algorithmoutperforms all the existing algo-
rithms at Rank@1 by a very significant 7.8 percent improve-
ment on the identification rate. From the results we can see
that the GRID dataset is more challenging than VIPeR, but
our proposed algorithm can still handle it well by adapting
the local similarity structure of each probe.

Experiments on CUHK03. The CUHK03 is a large-scale data-
set which contains 13164 images of 1360 pedestrians. All the
images are captured by six surveillance cameras overmonths.
Each person is observed by two disjoint camera viewswith an
average of 4.8 images in each view. In our experiments, three
state-of-the-art CNNs including ResNet50, DenseNet121 and
HA-CNN are selected as our baselines to extract features of
testing data and our proposed OLMANS is directly applied
to them. The comparison results under the newly proposed
splitting protocol is shown in Table 4. For all the three base-
lines, ourmethod further improves the Rank@1 andmAPper-
formances by a large margin (over 14 percent on Rank@1
and 11 percent on mAP) to a state-of-the-art level. The results
verify that our proposed OLMANS is not only suitable to
the handcrafted features, but also works well for the state-
of-the-art deep features.

Evaluation on Market1501. Market1501 is a large-scale
P-RID benchmark which contains 32668 bboxes of 1501

identities. Each person is recorded by six cameras at most,
and two at least. Table 4 shows the comparison results of
our OLMANS on the baselines and against the state-of-the-
art results. Although the most recent approaches have
achieved a pretty high performance (� 90 percent) on
Market1501, the improvement of our method is over 4 and
6 percent on Rank@1 and mAP for all the three baselines by
handling the “hard” probe samples well.

Evaluation on DukeMTMC-reID. DukeMTMC-reID dataset
is a recent large-scale benchmark to date proposed for
P-RID, but the lasted methods have obtained promising
performances. As show in Table 4, the recently published
methods, SPreID [70], PCB [18] and Part-aligned [60],
boost the state-of-the-art to 85.9 percent (73.3 percent) on
Rank@1(mAP). By implementing our OLMANS on HA-
CNN, the Rank@1(mAP) result is boosted from 80.7(64.4)
to 83.9 percent (69.0 percent), which approaches the state-
of-the-art performance.

Evaluation on MSMT17. MSMT17 [22] is the latest and
largest P-RID benchmark so far. The extreme large-scale
identities and a large number of distractors make this dataset
pretty challenging. We evaluate the performance of the base-
lines on MSMT17 dataset with(w/) and without(w/o) our
algorithm in Table 5. Our method improves the Rank@1
(mAP) performance of DenseNet121 from 66.0 percent
(34.6 percent) to a state-of-the-art result 75.5 percent
(43.1 percent). Such results demonstrate that our proposed
OLMANS is scalable to the size of dataset, even a large

TABLE 4
Comparison Results on CUHK03, Market1501, and DukeMTMC-reID

CUHK03 Market1501 DukeMTMC-reID

Method R@1 mAP Method R@1 mAP Method R@1 mAP

Ours(ResNet50) 59.4 54.8 Ours(ResNet50) 91.1 76.8 Ours(ResNet50) 79.1 63.5
Ours(DenseNet121) 53.1 49.3 Ours(DenseNet121) 90.9 75.4 Ours(DenseNet121) 80.2 64.1
Ours(HA-CNN) 62.6 58.3 Ours(HA-CNN) 93.8 81.1 Ours(HA-CNN) 83.9 69.0

ResNet50 [57] 47.9 46.8 ResNet50 [57] 88.5 71.3 ResNet50 [57] 77.7 58.8
Dense121 [14] 41.0 40.1 Dense121 [14] 88.2 69.2 Dense121 [14] 78.6 58.5
HA-CNN [13] 48.0 47.6 HA-CNN [13] 90.6 75.3 HA-CNN [13] 80.7 64.4
PCB [18] 63.7 67.5 PCB [18] 83.3 69.2 PCB [18] 83.3 69.2
SVDNet [58] 41.5 37.3 SVDNet [58] 82.3 62.1 SVDNet [58] 76.7 56.8
DPFL [68] 40.7 37.0 DNSL [11] 61.0 35.6 DuATM [69] 81.8 64.6
Mancs [33] 69.0 63.9 Mancs [33] 93.1 82.3 SPreID [70] 85.9 73.3
PAN [71] 36.3 34.0 Part-aligned [60] 91.7 79.6 Part-aligned [60] 84.4 69.3
MLFN [59] 52.8 47.8 PN-GAN [72] 77.1 63.6 PAN [71] 71.6 51.5
DaRe [73] 55.1 51.3 DeepCC [74] 89.5 75.7 GAN [21] 67.7 47.1

All the results are the best performances reported in their literatures.

TABLE 5
State-of-the-Art Comparison Results on on MSMT17

Method MSMT17

R@1 R@20 mAP

Ours(ResNet50) 72.8 88.6 55.0
Ours(DenseNet121) 75.5 89.9 43.1
Ours(HA-CNN) 68.0 87.8 37.8

SqueezeNet [15] 30.6 N/A 13.0
MobileNetv2 [16] 44.9 N/A 21.1
SuffleNet [17] 39.6 N/A 17.8
ResNet50 [57] 63.4 86.1 34.2
DenseNet121 [14] 66.0 86.6 34.6
HA-CNN [13] 61.8 85.8 34.6

All the results are the best performances reported in their literatures.

TABLE 6
Comparison with the State-of-the-Art Re-Ranking Method

Method CUHK03 Market1501 DukeMTMC

HA-CNN 48.0(47.6) 90.6(75.3) 80.7(64.4)
HA-CNN+RR 54.8(55.7) 91.4(79.0) 82.5(69.9)
HA-CNN+Ours 62.3(56.5) 92.7(79.0) 83.7(67.8)

Dense121 41.0(40.1) 88.2(69.2) 78.6(58.5)
Dense121+RR 48.1(51.5) 90.2(85.0) 83.7(76.9)
Dense121+Ours 53.1(49.3) 90.4(74.0) 84.2(67.1)

Rank@1(mAP) result is reported. Red represents the best result.
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number of testing probes are given, the efficient optimization
scheme and theoretical analyses guarantee the performance
of our proposedOLMANS.

5.1.3 Comparison with Re-Ranking

As we discussed in Section 4.4, both our proposed OLMANS
and the re-ranking technique can be applied to any offline
learned P-RID baselines for further online performance
improvement. In this part, we evaluate our proposed
OLMANS and a state-of-the-art re-ranking method (RR) [46]
on the CUHK03, Market1501 and DukeMTMC-reID datasets
by selecting two CNN-based P-RID models, HA-CNN [13]
and Dense121 [14] as baselines. The comparison results in
Table 6 show that our method can improve the baseline per-
formance significantly at both Rank@1 andmAP evaluations.
Compared with [46], our OLMANS works better on improv-
ing Rank@1 performance and has comparative improvement
on the mAP evaluation since [46] considers the k-reciprocal
nearest neighbors of both probe and extra gallery data, it
achieves a large improvement on mAP but with limited
improvement on Rank@1 owing to the lack of instance-
specific local adaptation. However, our method only utilizes
the given query probes and a set of negative samples to gain
a large improvement of the baseline performance.

5.1.4 Ablation Study

(1) Influence of Baseline Quality. Our proposed OLMANS
algorithm is applied on top of an offline-learned baseline,

thus its overall performance may depend on the learning
quality of adopted baseline. In order to verify whether our
OLMANS can always be helpful, baseline models obtained
at various learning stages of a global metric learner [5] are
tested, as in general the performance of the baseline learner
improves with more training (e.g., more training iterations).
As shown in Fig. 5, even the learned global metric does per-
form poorly (in its early training stages), our online local
metric adaptation is able to consistently and significantly
improve the performances by a large margin. This is
because the local discriminative information introduced by
hard negative samples is able to capture the specific crux of
one identity which is quite helpful for identification.

(2) Influence of Baseline Metric Choice. An interesting ques-
tion is whether our OLMANS can always work for any
baselines as promised. To verify it, we conduct the follow-
ing experiment that different kinds of global metric learners,
euclidean distance, XQDA [6], MLAPG [5] and DNSL [11]
are adopted for the LOMO feature as the underlying base-
lines that our OLMANS algorithm is readily applied on.
The results on VIPeR and GRID datasets are reported in
Table 7, as well as the complete CMC curves in Fig. 6. We
observe that for all the learners, our proposed OLMANS
algorithm is able to boost the identification performance
with a significantly improvement, even double the Rank@1
performance (on GRID).

(3) Influence of Baseline Feature Choice. We evaluate various
feature descriptors for P-RID to verify that the performance
of our OLMANS is independent of the choice of feature.
Both the hand-crafted features, LOMO [6] and deep fea-
tures, CaffeNet [55], VGG16 [56] and ResNet50 [57] are
examined. The above pre-trained CNN models from which
we have removed the final fully-connected (FC) layer are
further fine-tuned by the large-scale Market1501 datasets,2

then they are directly used to extract the features for VIPeR
and GRID datasets. As can be seen from Table 8, the perfor-
mance improvement by our OLMANS method is indepen-
dent of the used feature descriptors.

(4) Influence of the Weighting Parameter �. The parameter �
in Eq. (14) is used to balance the underlying baseline and
the learned local metric. Different � will have different
influences to the identification performance. We conducted
an experiment on VIPeR dataset to determine the value of �,

Fig. 5. The influence of baseline quality. The x-axis means the maximum iteration time for offline learning and the y-axis is the identification rate
(Rank@1, Rank@5 and Rank@10 on VIPeR).

TABLE 7
The Influence of Baseline Metric Choice

Baselines GRID VIPeR

R@1 R@20 R@1 R@20

Euc 9.12 29.76 15.32 50.66
Euc+Ours 20.88 45.12 21.99 56.11

XQDA 12.96 43.52 38.99 91.94
XQDA+Ours 29.20 50.96 43.54 92.15

MLAPG 17.60 56.08 40.28 93.39
MLAPG+Ours 30.16 59.36 44.97 93.64

DNSL 15.12 53.12 40.19 93.54
DNSL+Ours 28.96 56.96 43.67 93.61

+Ours means implementing our OLMANS on the baselines. Red represents
the better results.

2. The Rank@1(mAP) performances are: CaffeNet = 44.31(24.0),
VGG16 = 63.93(42.5) and ResNet50 = 77.22(56.1)
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the results of which are shown in Fig. 7. We need to
point out some special � values: The � ¼ 0 is the base-
line result from [5] without our local metric adaptation
and � ¼ max represents that � is set as Eq. (15). So setting

� ¼ max1�j�mðkpi � gjk2Þ=max1�j�mðkpi � gjk2Mi
Þ achieves

the best result because it normalizes the norm scales of the
baseline and locally adapted distances.

(5) Influence of Negative Sample Database. For our
OLMANS, a negative sample database is used to provide
the negative training data. Because there are various strate-
gies to collect NDB, we conduct the following experiments
to investigate the influences of different NDB choices. The
experiments are conducted on VIPeR dataset. Moreover, the

global metric learning method MLAPG is adopted as the
baseline model.

Using the training data from the same benchmark as the NDB:
Here the training samples in VIPeR which have different
identities from P(the training data for global metric learn-
ing) are used as negative samples. It guarantees that the
obtained NDB is clearly meaningful. The P-RID result is
given in Table 9 as Our-SAME.

Fig. 6. The influence of baseline metric choice. (a) and (d) are the results on VIPeR and GRID directly using the euclidean distance; (b) and (e) are
XQDA [6] results; (c) and (f) are MLAPG [5] results.

TABLE 8
The Influence of Baseline Feature Choices on VIPeR
and GRID under Different Metrics (10-Folds Average

Rank@1 Performance Is Reported)

Dataset Features Euclidean MLAPG XQDA DNSL

VIPeR

LOMO 15.32/21.99 40.28/44.97 38.99/43.54 40.19/43.67

CaffeNet 17.72/21.84 18.35/19.30 20.41/28.16 20.38/23.26

VGG16 20.25/26.27 20.25/23.73 23.45/29.02 23.86/26.52

ResNet50 22.78/27.22 23.42/26.58 31.93/40.47 33.70/38.01

GRID

LOMO 9.12/20.88 17.60/30.16 12.96/29.20 15.12/28.96

CaffeNet 2.40/13.60 5.60/10.42 10.24/21.92 7.28/16.72

VGG16 6.40/18.44 7.20/16.84 12.72/21.52 10.24/17.36

ResNet50 12.84/23.22 12.40/19.12 21.44/34.96 17.36/29.44

For each result, the former one is the baseline result without our OLMANS,
and the latter is our OLMANS result.

Fig. 7. The influence of parameter �. The x-axis means the value of �
and the y-axis is the identification rate. The results at Rank@1, Rank@5
and Rank@10 on VIPeR are shown.
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Using Different Benchmark Datasets as the NDB. Here we uti-
lize the other benchmark, the GRID dataset as the NDB in
our experiment, so that we can guarantee that the identities
of all the negative samples in the NDB are different from P.
For each probe pi, the k nearest negative samples are found
in the NDB (under the baseline feature) and used for our
OLMANS. Different values of k (50, 100, 500) are chosen for
further comparisons. The experiment results Our-D-50/100/
500 are shown in Table 9. Moreover, an additional experi-
ment Our-D-RAM that uses 50 random negative samples
from the NDB for OLMANS is compared. This experiment
validates the insight of our method that the effective nega-
tive samples are those that are close to the probe in the fea-
ture space (e.g., strong false positives).

From Table 9, it can be observed that Our-SAME per-
forms the best because the negative data from the same
benchmark dataset are most discriminative. Results on Our-
D-50/100/500 also largely outperform the baseline by consis-
tent improvements. Our-D-RAM can not improve the base-
line performance since this randomly selected small-size
NDB provides no useful hard negatives for OLMANS.

(6) Learning Cost Analysis and Comparison. Although each
query probe (or probe set) needs to learn a local Mahalanobis
metric on the testing stage, the proposed optimization solu-
tion to our OLMANS objective makes the learning efficient
and largely reduces the learning time. Table 103 provides a
thorough comparison of average learning time of various
state-of-the-art metric learning-based methods on VIPeR
dataset. Besides, Table 11 shows the learning time of different
advanced global metric learners on a large-scale dataset, Mar-
ket1501.All the experiments are conducted on a remote server
with an Intel i7-5930K@3.50 GHz CPU and 32Gmemory. The
total average learning time of our method on VIPeR is only
4.81 seconds for the adaptation of all the 316 probes, much
shorter than learning a single global metric in 25.82 seconds.
For the large-scale dataset Market1501, the efficiency advan-
tage of ours ismuchmore pronounced.Our localmetric adap-
tation time is 10 	 100 times less than the other global metric

learners. So the extra time spent in our OLMANS is indeed
nominal comparedwith learning a globalmetric.

5.2 Experiment on Image Retrieval

5.2.1 Experiment Settings

Data. We evaluate our proposed OLMANS on four widely-
used image retrieval benchmarks: the original Oxford [1],
Paris [2] and their corresponding revisited datasets
ROxford and RParis from [3] by correcting annotation mis-
takes, adding new query images and introducing new eval-
uation protocols. The Oxford and Paris datasets contain
5063 and 6392 images collected from Flickr associated with
Oxford and Paris landmarks respectively. Each dataset con-
tains 55 queries coming from 11 landmarks. For the revis-
ited versions, ROxford and RPari, 15 queries from 5 out of
the original 11 landmarks are along with the original 55
queries for evaluation.

Evaluation. The training dataset in [4] is used as the NDB.
For all the benchmarks, the mean average precision results
over the query images are reported in our experiments. For
ROxford and RPari, three new evaluation difficulties, Easy
(E), Medium(M) and Hard(H), are evaluated. Since the old
setup of Oxford and Paris appears to be close to the new
Easy setup, so we report only the M and H results in our
experiments.

Baseline. A CNN-based image retrieval model, GeM [4] is
adopted as baseline in our experiment to implement our
proposed OLMANS on. Two different CNN backbones,
VGG16 [56] and ResNet101 [57], are evaluated. Besides, the
whitening is adopted as a post-processing for GeM. There-
fore, four different baselines, GeM-VGG16, GeM-VGG16-
Whiten, GeM-Res101 and GeM-Res101-Whiten, are exam-
ined in our experiments. The pre-trained model from a
pytorch implementation4 is utilized in our work.

5.2.2 Comparison with State-of-the-Art

The comparison experiment results are shown in Table 12.
Compared with the baseline models, GeM-VGG16, by
implementing our proposed OLMANS to them, the mAP
performance of GeM-VGG16 is improved from (82.5, 82.2,
55.5, 26.6, 63.0, 37.2 percent) to (83.5, 82.9, 55.9, 26.8, 63.5,
37.3 percent) on (Oxford, Paris, ROxford-M, ROxford-H,
RParis-M, RParis-H) respectively. The similar improve-
ment is also observed for the GeM-VGG16-Whiten baseline.
As for another more powerful baseline with a different
backbone network, GeM-Res101, our method further boosts
the mAP performance from (81.0, 87.7, 55.5, 27.5, 70.0,
44.7 percent) to (81.7, 87.6, 56.1, 27.8, 70.3, 44.9 percent)
on (Oxford, Paris, ROxford-M, ROxford-H, RParis-M,

TABLE 9
The Influence of Different NDBs on VIPeR

Method R@1 R@5 R@10 R@20

Baseline 40.73 69.94 82.34 92.37
Our-D-RAM 39.87 70.51 82.28 91.77
Our-SAME 44.97 74.43 84.97 93.64
Our-D-050 42.63 73.63 84.81 93.54
Our-D-100 43.04 73.86 84.30 93.42
Our-D-500 42.53 73.89 84.15 93.35

TABLE 10
Average Learning Time (Seconds) on VIPeR

Method ITML MLAPG LADF
Ave Time 20.5 25.8 31.7

Method LMNN PRDC OLMANS
Ave Time 152.9 394.6 4.8

TABLE 11
Learning Time (Seconds) on Market1501

Method XQDA MLAPG MFA
Train Time 3233.8 2732.8 437.8

Method kLFDA DNSL OLMANS
Train Time 995.2 3149.7 19.60

3. The total learning time of OLMANS includes the local metric
adaptation time and retrieval time for all probes. 4. https://github.com/filipradenovic/cnnimageretrieval-pytorch
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RParis-H) respectively. The improvement of OLMANS can
be further boosted by selecting NDB elaborately. While
OLMANS still shows promising performance on image
retrieval task under different baseline models, which veri-
fies the generalization ability of proposed method.

6 CONCLUSIONS

In this paper, we proposed a novel online local metric adap-
tation algorithm to learn a dedicated Mahalanobis metric
for each query probe on the online testing stage of visual
instance retrieval. This new approach only uses negative
samples for metric adaptation, which is practical in real sit-
uation. It largely reduces the demand for a large number of
positive training data as in existing offline learning-based
VIR methods, and it only incurs minimum computational
costs to perform online learning. In-depth theoretical analy-
ses well justify our algorithm and extensive experiments on
different tasks demonstrate that our new approach consis-
tently and significantly outperforms the state-of-the-arts. In
this work, our proposed method is considered as a general
and independent module for any offline metric learning or
feature extraction baselines for further online local adapta-
tion. In the future, it is interesting to extend our proposed
approach into a deep metric learning approach since it
could be directly involved in the model learning.
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