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Abstract—Supervised dimensionality reduction for sequence data learns a transformation that maps the observations in sequences

onto a low-dimensional subspace bymaximizing the separability of sequences in different classes. It is typically more challenging than

conventional dimensionality reduction for static data, becausemeasuring the separability of sequences involves non-linear procedures to

manipulate the temporal structures. In this paper, we propose a linear method, called order-preservingWasserstein discriminant analysis

(OWDA), and its deep extension, namely DeepOWDA, to learn linear and non-linear discriminative subspace for sequence data,

respectively. We construct novel separability measures between sequence classes based on the order-preservingWasserstein (OPW)

distance to capture the essential differences among their temporal structures. Specifically, for each class, we extract theOPWbarycenter

and construct the intra-class scatter as the dispersion of the training sequences around the barycenter. The inter-class distance is

measured as theOPWdistance between the corresponding barycenters.We learn the linear and non-linear transformations by

maximizing the inter-class distance andminimizing the intra-class scatter. In thisway, the proposedOWDA andDeepOWDA are able to

concentrate on the distinctive differences among classes by lifting the geometric relationswith temporal constraints. Experiments on four

3D action recognition datasets show the effectiveness of OWDA andDeepOWDA.

Index Terms—Optimal transport, order-preserving Wasserstein distance, barycenter, dimensionality reduction, sequence classification

Ç

1 INTRODUCTION

THE sequence classification problem arises in a wide
range of real-world applications. A sequence is com-

prised of a series of ordered observations, where each indi-
vidual observation is generally of no special interest, but the
sequence as a whole represents the target object. The obser-
vations in the same sequence are not independent and their
relationship reveals the temporal structure of the sequence.
For instance, all ordered frames in an action video as a
whole represent the action and these frames are temporally
related. Low-dimensional and discriminative representations
of frame-wide observations in sequences are crucial to reduce
the complexity of the subsequent modeling and improve the
classification performance. Supervised dimensionality reduc-
tion for sequence data (DRS) attempts to learn such low-
dimensional discriminative representations by transforming
the observations in the noisy high-dimensional space to a
subspace.

In this paper, we propose a linear supervisedDRSmethod
by using the Fisher criterion to maximize the ratio of the
inter-sequence-class separability to the intra-sequence-class

dispersion. For each class, we extract the order-preserving
Wasserstein barycenter and measure the dispersion of train-
ing sequences around the barycenter w.r.t. the order-
preserving Wasserstein (OPW) distance [1], [2]. We measure
the inter-class separability between two classes as the OPW
distance between the corresponding barycenters. In this
way, the intra-class and inter-class separabilities are uni-
formly measured with the OPW distance. We employ OPW
to perform temporal alignment between sequences and bary-
centers with different local durations, lengths, and temporal
distortions. Through alignment, temporal information is
encoded into the separabilities.

Most existing DRSmethods [4], [5], [6] depend on dynamic
time warping (DTW) [3] to measure the separability. Due to
the boundary condition and the strict order-preserving con-
straint, DTW cannot tackle local reorder distortions and may
not fully capture the essential differences of different patterns.
As shown in Fig. 1, the two action sequences “jump” and
“run” start from different poses, resulting in reordered poses
in the run-up phase, and “jump” vacates after a run-up. For
DTW, some different running poses are wrongly aligned
(shown in blue bold) and the vacated poses of “jump” are
forced to align to a single pose of “run” (shown in green).
Many pairwise differences among the vacant poses and the
running poses in the same cycle are not included.

Differently, OPW casts the temporal alignment as a trans-
port problem. It encourages transport between temporally
adjacent observations, but allows local reorders or distor-
tions. In Fig. 1, the reordered running poses are correctly
aligned by OPW. For the boxed parts, the vacated poses of
“jump” are dispersedly aligned to different poses in a peri-
odic cycle of “run” (shown in red). OPW is able to determine
the true distinctive observation pairs that reflect the essential
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differences of two sequences or barycenters, so that the DRS
method can focus on discriminating these distinctions. Since
OPW is more robust to local distortions, our OPW-based
intra-class scatter also better encodes the intra-class varia-
tions. In addition, different from the binary DTW alignment,
the transport measures the probabilities of how different
observation pairs contribute to the total difference. The prob-
abilities among the boxed parts are scattered and more local
relations among all observations are considered by the pro-
posed DRSmethod.

The main contributions of this paper are three-fold. 1. We
propose novel OPW-based separability measures among
sequence classes to reflect their essential differences. Espe-
cially, we construct unified intra-class and inter-class scat-
ters based on the learned optimal transports to encode the
temporal relationships and employ more local pairwise dif-
ferences. 2. We provide mathematical derivations to com-
pute the barycenter for sequence data w.r.t. the OPW
distance, based on which we further derive a discrete and
explicit formulation of the covariance matrix for sequence
data. The OPW barycenter and the derived covariance can
be considered as the first and second order statistics for
sequences, respectively. 3. We learn a discriminative sub-
space in which the sequences from different classes are
maximally separated w.r.t. the OPW distance under the
Fisher’s criterion, which can be extended to other criteria.

This paper is an extension of the conference paper [7],
where the new contributions include 1. the deep extension of
the proposed OWDA, namely DeepOWDA, which learns
nonlinear transformations using deep neural networks; 2. the
evaluation of iterative variants of OWDA and DeepOWDA
that jointly learn the subspace and the associated optimal
transports in an alternative manner; 3. the evaluation of the

variants of OWDA and DeepOWDA with fixed uniform
weights for barycenters; 4. the experimental evaluation on
the large scale NTU RGB-D dataset; 5. comparisons with
state-of-the-art results on four 3D action recognition datasets;
6. comparisons with other sequence distances such as DTW,
Soft-DTW and CTW; 7. the experimental evaluation on the
effects of different types of frame-wide features; 8. more in-
depth analyses and discussions of the proposedmethods and
the relatedworks.

2 RELATED WORK

Discriminant Analysis. Supervised linear dimensionality reduc-
tion for static data has been extensively studied in the literature.
The well-known linear discriminant analysis (LDA) learns the
projection by maximizing the ratio of inter-class distance to the
intra-class distance. Various methods are proposed to improve
or extend LDA in specific situations. The null space LDA [8],
generalized ULDA [9] and orthogonal LDA [10] deal with the
small sample size problem resulting in singular scatter matri-
ces. To handle heteroscedastic data, heteroscedastic LDA [11]
incorporates the second-order information into the between-
class scatter, and subclass discriminant analysis [12] divides
each class into several homoscedastic subclasses and then
applies LDA to the subclasses. Max-min distance analysis
approaches [13], [14], [15] maximize the minimum pairwise
between-class distance in the subspace. Marginal Fisher analy-
sis [16] only uses the neighboring samples and the samples dis-
tributed around the class boundaries to construct the intra-
class and inter-class scatters. Wasserstein discriminant analy-
sis [17] employs the regularized Wasserstein distance to mea-
sure the distance between the empirical probabilities of class
populations. Kernal-LDA [18] and DeepLDA [19] extend LDA
to learn non-linear transformations by kernel trick and employ-
ing deep neural networks, respectively. These advances cannot
be applied to observations in sequences directly because the
observations do not satisfy the basic i.i.d. assumption.

Dimensionality Reduction for Sequence Data. Far less attention
has been paid to DRS. In [20], a kernel-based sufficient
dimensionality reduction approach is proposed to improve
the performance of sequence labeling,where each observation
in sequences has a label. In this paper, we learn the projection
to improve the performance of sequence classification that
each entire sequence is associated with a single label. Canoni-
cal Time Warping (CTW) [21], generalized CTW
(GCTW) [22], [23], and Deep CTW (DCTW) [24], [25] are
unsupervised distances between sequences from different
modals where vectors may have different dimensions. They
use two separate transformations tomap two sequences into a
common subspace in which the sequences are maximally cor-
related. The transformation for the same sequence is different
when aligned to different sequences. In [26], SoftDTW deter-
mines a soft alignment between two sequences that results in
the soft-minimum of all feasible alignments, but each feasible
alignment is strict order-preserving. In [27], [28], kernelized
rank pooling (KRP) and generalized rank pooling (GRP) are
pooling methods that encode different sequences into differ-
ent subspace representations in an unsupervised manner. In
contrast, the proposed OWDA and DeepOWDA are super-
vised DRS methods that learn a common subspace so that
sequences from different classes are better separated in this

Fig. 1. The two action sequences “jump” and “run” differ in the boxed
parts and local orders at the beginning stage. Top: the DTW [3] align-
ment. The alignment matrix is shown on the right. The white grid in row i
and column j indicates that the i-th and j-th observations in the two
sequences are aligned. Bottom: the OPW [1] alignment. For each pose,
only the alignment with the largest transport probability is shown. Such
aligned pairs reflect the essential difference between “jump” and “run”
because the take-off-landing cycle is dispersedly aligned to a running
cycle. The transport matrix is shown on the right. The grey value of a
grid indicates the probability of aligning the corresponding observations.
The probabilities among the boxed part are scattered and more pairwise
local differences among poses are employed.
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subspace. The transformation remains the same for all
sequences. CTW, GCTW, DCTW, SoftDTW, KPR, and GRP
can be applied to the low-dimensional sequences transformed
byOWDAandDeepOWDA.

In [29], a Mahalanobis distance for observations in
sequences is learned to improve the performance of multi-
variate sequence alignment, where the ground-truth align-
ments between sequences are given. In this paper, we learn
the projection without any alignment annotations. In [30],
supervisedwordmover’s distance learns a transformation to
better separate different documents with the optimal trans-
port distance. The order of words in the documents is
ignored. The objective is minimizing the stochastic leave-
one-out nearest neighbor classification error on a per-
document level. The gradient-based iterative solution is
developed to optimize it. In this paper, we learn a transfor-
mation to better separate sequences from different classes.
The objective is maximizing the separability among sequence
classes. We build novel separability measures to encode the
temporal information and obtain a closed-form solution.
In [31], the embedding vectors of tree nodes are learned by
minimizing a surrogate of the classification error using the
nearest prototype classifier w.r.t. the tree edit distance, where
the prototypes are selected from the training trees. In this
paper, we minimize the distances between training sequences
to the corresponding barycenters w.r.t. the OPW distance.

In [4], [5], [6], linear sequence discriminant analysis (LSDA)
and max-min inter-sequence distance analysis (MMSDA) are
proposed for DRS, respectively. LSDA andMMSDA extract a
representative sequence and a intra-class variance matrix for
each class based on the statistics of a trainedHMM. The DTW
distance between the representative sequences is used as the
inter-class distance. The similarities for measuring the inter-
class distance and intra-class scatter are inconsistent, because
the HMM-based intra-class variance does not measure the
dispersion of the DTW distances among the sequences.
In [32], [33], latent temporal LDA (LT-LDA) divides all obser-
vations of sequences from each class into several vector sub-
classes by dynamically aligning the sequences in this class to
the DTW barycenter. All the subclasses are treated as inde-
pendent to construct the inter-class separability. Therefore,
the temporal information among the subclasses of the same
sequence class is not fully explored.

Different from these methods, in this paper, we employ
the OPW distance instead of the DTW distance as the simi-
larity measure between sequences, and construct the intra-
class scatter and the inter-class distance consistently w.r.t.
the OPW distance. We extract the OPW barycenter as the
representative sequence, which is non-parametric and has
better scalability without the need of training HMMs with
massive parameters. We use the OPW distance between
the OPW barycenters as the inter-class separability
between two sequence classes, which explicitly encodes
the temporal information among the elements of the OPW
barycenters. MMSDA optimizes the max-min distance cri-
terion, which is more suited to tackle the class separation
problem. Note that the proposed method can also be
extended by applying the max-min distance criterion to
the constructed inter-class and intra-class scatters. In this
paper, we only compare with the DRS methods optimizing
the same Fisher criterion.

Skeleton-Based 3D Action Recognition. Most 3D action rec-
ognition methods either learn a representation of the entire
sequence or employ sequence models such as LSTM and
HMM. For the first category, many methods obtain the
entire representation from the sequence of frame-wide fea-
tures. In [34], the pairwise relative positions or angles of
joints are used as the feature of each frame. Each action
sequence is encoded into a vector by Fourier temporal pyra-
mid. In [35], [36], the joint positions are used as the feature
of each frame and the covariance-based features are
extracted from the sequence of frame-wide features. In [37],
the histogram of relative joint positions is used as the
frame-wide feature and all frame-wide features are encoded
by rank pooling. In [38], translations and rotations of parts
are extracted as features and each sequence cast as a curve
in the Lie group is encoded by Fourier temporal pyramid.
Such methods can imply a loss of temporal information.

For the second category, each action is represented as a
sequence of frame-wide features and sequences are directly
input to sequence models for classification. In [39], the histo-
gram of relative joint positions is used as the feature of each
frame and the sequences are modeled by HMM. In [40], [41],
[42], [43], [44], joint positions, relative motions between suc-
cessive frames, or the combined or normalized versions are
used as frame-wide features and the sequences are modeled
by recurrent neural networks such as temporal sliding LSTM
(TD-LSTM), Bi-LSTM, spatio-temporal LSTMwith trust gates,
global context-aware attention LSTM, and independently
recurrent neural network (IndRNN). Most recent works such
as [45], [46], [47], [48], [49]model the body skeletons as spatio-
temporal graphs by viewing joints as nodes and bones as
edges and employ graph neural networks for classification.

In this paper, our purpose is not to develop a state-of-the-
art 3D action recognition method. We apply the proposed
DRS method, OWDA, to 3D action sequences to evaluate its
performance. The proposed OWDA benefits both categories
of 3D action recognition methods. After projection by
OWDA, the sequences are more discriminative and the tem-
poral information is enhanced. As a result, more useful
information is encoded into the entire representation and
sequence models need to learn few parameters. However,
OWDA cannot be combined directly with graph-based
methods because the reduced features cannot be modeled
into a graph according to the structure of the human body
after dimensionality reduction is performed to the frame-
wide features of concatenated joint positions.

3 LINEAR ORDER-PRESERVING WASSERSTEIN

DISCRIMINANT ANALYSIS

The proposed linear OWDA consists of three stages: extract-
ing the OPW barycenter per class, constructing the separa-
bility scatters based on the barycenters, and learning the
projection by maximizing the separability. In this section,
we first briefly review the OPW distance, and then present
the details of the three stages, respectively.

3.1 Background on OPW

We first briefly review the order-preserving Wasserstein
(OPW) distance [1], [2]. For two sequences XX ¼ ½xx1; . . . ; xxNx �
and YY ¼ ½yy1; . . . ; yyNy

� with lengths Nx and Ny, respectively,
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where the dimension of features is q, i.e., xxi; yyj 2 Rq, the
OPW distance is defined as:

dOPW ðXX;YY Þ :¼ TT �; DDh i
s:t: TT �¼argmin

TT2Fðgg;bbÞ
TT;DDh i��1IðTT Þþ�2KLðTT jjPP Þ; (1)

whereDD :¼ ½dðxxi; yyjÞ�ij 2 RNx�Ny is the matrix of all the pair-
wise distances between supporting points, dð�; �Þ is set to the
squared euclidean distance in this paper. TT :¼ ½tij�ij 2
RNx�Ny is the transport matrix, �; �h i is the Frobenius dot

product, and Fðgg;bbÞ :¼ fTT 2 R
Nx�Ny
þ jTT11Ny ¼ gg; TTT11Nx ¼ bbg

is the feasible set of the transport TT . IðTT Þ¼Pi;j
tij

ð i
Nx
� j
Ny
Þ2þ1

is

the inverse difference moment of the transport matrix TT to

encourage the local homogeneity that large values appear

near the diagonal, and KLðTT jjPP Þ is the Kullback-Leibler

divergence between TT and a prior distribution PP :

pij :¼ PP ði; jÞ ¼ 1

s
ffiffiffiffiffiffi
2p
p e

�‘2ði;jÞ
2s2 ; (2)

where ‘ði; jÞ is the vertical distance from the position

ði; jÞ to the diagonal line. �1 > 0, �2 > 0, and s are hyper-

parameters. It is assumed that the weights of instances in the
same sequence are the same, i.e., gg ¼ ð 1

Nx
; . . . ; 1

Nx
Þ and bb ¼

ð 1Ny
; . . . ; 1

Ny
Þ, respectively. In [1], OPW is solved by the

Sinkhorn’s algorithmwith a complexity ofNxNyq.

3.2 Order-Preserving Wasserstein Barycenter

For a sequence class with a set of training sequences, we
want to extract a single representative sequence that reveals
the average temporal structures and general evolution
trends, which can serve as the mean sequence of a set of
sequences similar to the mean vector of a set of vectors.
Extending the averaging operation to sequences is challeng-
ing. As the lengths of different sequences are different, it is
not plausible to perform directly averaging to the observa-
tions at the same time step.

Recall that the mean of a set of vectors can also be viewed
as the barycenter of the vectors with regard to the euclidean
distance. Similarly, for sequence data, the barycenter of a
set of sequences with regard to a sort of sequence distance
can also act as the mean sequence in some sense. We extract
the barycenter with regard to the OPW distance, which we
call the order-preserving Wasserstein barycenter.

The barycenter UU ¼ ðmm; ggÞ consists of a sequence of
ordered supporting points and a weight sequence associat-
ing each supporting point with a probability value. mm ¼
½mmi; i ¼ 1; . . . ; L� 2 Rq�L is the sequence of supporting points
and gg ¼ ½gi; i ¼ 1; . . . ; L� is the sequence of associated
weights. gg 2 R1�L lies in the simplex QL. L is a pre-set
value, which indicates the maximum allowed number of
supporting points of the barycenter.

Given a set of sequences XXk; k ¼ 1; . . . ; N , Nk denotes the
length of XXk, DDk denotes the matrix of all pairwise ground
distances between any mmi and observations in XXk, which
depends on mm:

DDkðmmÞ :¼ ½dðmmi; xx
k
j Þ�ij 2 RL�Nk : (3)

TTk denotes the transport between UU and XXk. The optimal
transport determined by OPW is given by argminTTk2Fðgg;bbkÞ
WðUU;XXk; TTkÞ, where

W ðUU;XXk; TTkÞ¼ TTk;DDkðmmÞh i��1IðTTkÞþ�2KLðTTkjjPP Þ:
(4)

By assuming that these sequences are equally weighted,
the order-preserving Wasserstein barycenter is such that

UU ¼ argmin
UU

XN
k¼1

min
TTk2Fðgg;bbkÞ

1

N
W ðUU;XXk; TTkÞ: (5)

Both the supporting point sequence mm and the weight
sequence gg need to be learned. However, the objective func-
tion (5) is not convex w.r.t. them simultaneously. We employ
the alternating updating strategy to minimize (5), where
gg; TTk and mm are updated alternatively by temporarily fixing
the other. To initialize mm, we divide XXk; k ¼ 1; . . . ; N uni-
formly into L segments, respectively, and use the mean of
vectors in the ith segments in allXXk as the initialmmi.

In procedure 1, we first update the weight sequence gg

and the optimal transports TTk; k ¼ 1; . . . ; N by fixing mm.
Eq. (4) can be reformulated as follows.

TTk;DDkðmmÞh i��1IðTTkÞþ�2KLðTTkjjPP Þ ¼ �2KLðTTkjjKKkÞ;
(6)

where dkij ¼ dðmmi; xx
k
j Þ, s�1ij ¼ �1

ð iN�
j
MÞ

2þ1
, andKKk ¼ ½pije

1
�2
ðs�1
ij
�dk

ij
Þ�ij.

DDkðmmÞ; k ¼ 1; . . . ; N are fixed when mm is fixed, hence KKk

are also fixed. Problem (5) is thereby reformulated as

min
gg;TTk;k¼1;...;N

XN
k¼1

1

N
KLðTTkjjKKkÞ

s:t: 9gg 2 QL; TTk11Nk
¼ gg; 8k ¼ 1; . . . ; N

TTk
T11L ¼ ½ 1Nk

; . . . ; 1
Nk
�T ; k ¼ 1; . . . ; N:

(7)

where QL :¼ fgg 2 RLjgi � 0; 8i ¼ 1; . . . ; L;
PL

i¼1 gi ¼ 1g:
By defining TT ¼ ðTTkÞNk¼1 2 ðRL�Nkþ ÞN and KK ¼ ðKKkÞNk¼1 2

ðRL�Nkþ ÞN , Problem (7) is rewritten as

min
gg;TT

KLNðTT jjKKÞ; gg 2 QL

s:t: TT 2 FF1 \FF2

; (8)

whereKLNðTT jjKKÞ :¼
PN

k¼1
1
N KLðTTkjjKKkÞ,

FF1 :¼ TT 2 ðRL�Nkþ ÞN : TTk
T11L ¼ ½ 1Nk

; . . . ; 1
Nk
�T ; 8k

n o
;

FF2 :¼ TT 2 ðRL�Nkþ ÞN : 9gg 2 QL; TTk11Nk
¼ gg; 8k

n o
:

In [50], it is shown that the iterative Bregman projection
(IBP) [51], [52] can solve Problem (8) efficiently. Specifically,
as proved in [1], each TTk is a rescaled version ofKKk with the
form of diagðkkk1ÞKKkdiagðkkk2Þ, and the scaling vectors can be
updated using the Sinkhorn’s iterations:

kk
ðnÞ
k1  ggðnÞ:=KKkkk

ðnÞ
k2 ; (9)
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kk
ðnþ1Þ
k2  1

Nk
; . . . ; 1

Nk

h iT
:=ðKKkÞTkkðnÞk1 : (10)

As given in [50], ggðnÞ is the update of the weights:

ggðnÞ  
YN
k¼1

kk
ðnÞ
k1 	 ððKKkÞTkkðnÞk2 Þ

� � 1
N
: (11)

where 	 is the element-wise product. The iterations con-
tinue until convergence. Given the learned weights and the
fixed supporting points, we perform OPW to obtain the
updates of the optimal transports TTk, for k ¼ 1; . . . ; N .

In procedure 2, we update the supporting point sequence
mm by fixing the weight sequence gg and optimal transports
TT �k; k ¼ 1; . . . ; N updated in procedure 1. In Eq. (4), only the
first term evolves mm. By viewing the sequences mm and XXk as
matrices, we have

TT �k;DDkðmmÞ
� � ¼ diagðmmTmmÞTgg � 2 TT �k;mm

TXXk

� �
þ diagðXXT

kXXkÞT ½ 1Nk
; . . . ; 1

Nk
�T :

We follow [53] to optimize the local quadratic approxima-

tion of the following function: diagðmmTmmÞTgg � 2 TT �k;mm
TXXk

� � ¼
kmmdiagðgg1

2Þ �XXkTT
�
k
T diagðgg�12Þk2 � kXXkTT

�
k
T diagðgg�12Þk2: Given

a single sequence XXk, the Newton update is mm XXkTT
�
k
T

diagðgg�1Þ:
For all N training sequences, mm is finally updated by

mm ð1� �Þmmþ �
XN
k¼1

XXkTT
�
k
T

 !
diagðgg�1Þ; (12)

where � 2 ½0; 1� is a pre-set value.
We cycle the two alternative procedures until the change

in the objective function value Eq. (5) is less than a threshold
or a maximum number of steps is reached. It was shown
in [50], [52], [54] that the iterative Bregman projection for
updating gg converges linearly. The convergence rate of the
Newton’s method for updating mm is quadratic. It can be diffi-
cult to obtain the global convergence rate of the overall alter-
nating optimization. In our experiments, it converges in
about 10 iterations. The complexity per iteration isOðNTLqÞ,
where T is the average length of sequences.

3.3 Covariance

For a set of sequences, the barycenter serves as the “mean”
sequence and reflects the average evolution. The dispersion
of the sequences around the barycenter can be straightfor-
wardly measured by accumulating the OPW distances:

dw ¼
XN
k¼1

dOPW ðUU;XXkÞ ¼
XN
k¼1

TT �k;DDk

� �
; (13)

where the optimal transports TT �k between UU and XXk, for k ¼
1; . . . ; N , are the by-products when determining the bary-
center, so no extra calculations are needed.

To measure the covariance over different dimensions, we
define a covariance matrix GG so that trðGGÞ¼dw. GG can be con-
structed by accumulating the weighted outer products
between any mmi and observations inXXk as follows:

GG ¼
XN
k¼1

XL
i¼1

XNk

j¼1
tkij
�ðmmi � xxk

j Þðmmi � xxk
j ÞT : (14)

We can find that GG captures all local relations between ele-
ments of the barycenter and the observations in all sequen-
ces. All element-observation pairs contribute to the total
covariance with different weights. The weight of a pair
ðmmi; xx

k
j Þ is actually the corresponding element tkij

�
of the

learned transport TT �k, so it reflects the probability ofmatching
the pair. In thisway, the local pairwise relations or joint prob-
abilities are encoded. Theweights are larger for the pairs that
have high joint probabilities, since the matched pairs proba-
bly correspond to the same temporal structure. The differen-
ces between pairs with low joint probabilities are also
incorporated, but with smaller weights, to consider soft
alignments and compensate possible missing matches. As a
result, the constructed GG better reflects the spatial-temporal
variances in different dimensions.

In [55], the optimal transport based variance for continu-
ous one-dimensional densities is defined as Eðd2W ðUU;XXkÞÞ,
which is a scalar, where dW is the Wasserstein metric. In this
section, we derive an explicit and discrete formulation of
the intra-class scatter GG in Eq. (14) for multi-dimensional
sequences. It satisfies trðGGÞ ¼Pk dOPW ðUU;XXkÞ, where OPW
can be viewed as the squared 2nd order Wasserstein dis-
tance with temporal constraints. Therefore, the constructed
GG in Eq. (14) is consistent with the definition in [55].

3.4 Learning the Projection

Our goal is to learn a transformation that projects the obser-
vations in sequences onto a low-dimensional subspace, in
which the sequences from different classes get better sepa-
rated. We employ the Fisher criterion to maximize the sepa-
rability, i.e., we maximize the ratio of the inter-sequence-
class distance to the intra-sequence-class dispersion.

For each sequence class vc; c ¼ 1; . . . ; C, we extract the
order-preserving Wasserstein barycenter UUc and the covari-
ance matrix GGc from the training sequences of the class. C is
the total number of classes. We define the intra-sequence-
class scatter as the weighted sum of covariances:

GGw ¼
XC
c¼1

pcGGc; (15)

where pc is the prior probability of class vc and can be esti-
mated as the ratio of the number of sequences of vc to the
total number of sequences of all classes.

We measure the distance between two classes vc and vc0
by the OPW distance between the corresponding order-pre-
serving Wasserstein barycenters.

dbðvc;vc0 Þ ¼ dOPW ðUUc; UUc0 Þ ¼ TT �cc0 ; DDcc0
� �

; (16)

where DDcc0 is the matrix of all pairwise distance between mmc
i

and mmc0
j , and TT �cc0 is the optimal OPW transport between the

two barycenters. The corresponding between-class scatter
GGbðcc0Þ is the weighted sum of outer products between ele-
ments of the two barycenters, so that dbðvc;vc0 Þ ¼ trðGGbðcc0ÞÞ:
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GGbðcc0Þ ¼
XL
i¼1

XL
j¼1

tcc
0

ij

�ðmmc
i � mmc0

j Þðmmc
i � mmc0

j ÞT : (17)

We define the overall inter-sequence-class scatter as the
weighted sum of all pairwise between-class scatters:

GGb ¼
XC�1
c¼1

XC
c0¼cþ1

pcpc
0
GGbðcc0Þ: (18)

We observe again that all the differences between ele-
ments in all barycenters contribute to the overall inter-class
scatter according to different weights. The weight tcc

0
ij

�
of a

pair ðmmc
i ;mm

c0
j Þ encodes the local relations of the two elements

and indicates their joint probability. GGb concentrates more
on the differences between the pairs with large joint proba-
bilities. Such differences reflect the essential distinctions of
two classes, because the matched pairs represent the homol-
ogous temporal structures and thus are distinctive for dis-
criminating the two classes. Different from the alignments
by DTW, where the weights are 1 for a small portion of
aligned pairs and 0 for other pairs, the weights by OPW are
soft probabilities and hence GGb also incorporates the differ-
ences between the pairs with smaller weights. This compro-
mises more information and is more robust to incorrect or
ambiguous alignments caused by noises.

When both the features in sequences and their dimen-
sions are not linearly related, the ranks of GGw and GGb are
minðNt; qÞ and minðCL; qÞ, respectively, where Nt is the
number of all features in all training sequences. When Nt �
q (CL � q), GGw (GGb) is full-rank. In extreme cases when there
are too few training sequences so that Nt < q, we can use
PCA to remove the null space of GGw or add a identity matrix
multiplied by a small scalar to GGw.

The objective of learning the projection WW using the
Fisher criterion is formulated as the ratio-trace problem:

max
WW

trððWWTGGwWWÞ�1WWTGGbWWÞ: (19)

The optimal W� of Problem (19) is the matrix whose col-
umns are the eigenvectors of G�1w Gb w.r.t. the q0 largest
eigenvalues, where q0 is the reduced dimensionality. The
proposed DRS method is called Order-preserving Wasserstein
Discriminant Analysis (OWDA).

3.5 Discussion

Complexity. Let Na and T denote the average number of
sequences per class and the average length of sequences,
respectively. The complexities for calculating the barycen-
ters for all C classes, calculating the inter-class and intra-
class scatters, and solving (19) are OðCNaTLqÞ, OðC2L2q2Þ,
OðCNaLTq

2Þ, and Oðq3Þ, respectively. The overall complex-
ity of linear OWDA is OðC2L2q2 þ CNaLTq

2 þ q3Þ. It scales
linearly with the number of samples, but cubically with the
dimension of features q due to the eigen-decomposition
(19). We simultaneously diagonalize the intra-class and
inter-class scatters [10] to solve (19). Any advanced methods
for large-scale eigen-decomposition can be applied to accel-
erate our method.

Subclass Extension. Our model can be extended to fit multi-
ple barycenters for each class. By implementing off-the-shelf
clustering methods on the training sequences for each class
given a sequence distance such as OPW, each class can be
clustered into several subclasses. Therefore, our method can
extract a barycenter for each subclass. However, whether we
need to use one or multiple barycenters per class depends
heavily on the data. If the data exhibit unimodal distributions,
using only one barycenter per class is enough. On the other
hand, if we use multiple barycenters, although we may gain
performance improvement, the computation cost increases.

4 DEEP ORDER-PRESERVING WASSERSTEIN

DISCRIMINANT ANALYSIS

The temporal evolution and distortion of sequences may be
highly non-linear, and sometimes a linear transformation
may not be able to fully distinguish the temporal structures
among sequences of different classes. In this section, we
extend the proposed OWDA to learn non-linear transforma-
tions using a deep neural network. We refer to this deep
extension as DeepOWDA.

Specifically, instead of using a linear projection matrix
WW , we employ a deep neural network to perform nonlinear
transformations on the frame-wide features of sequences.
The neural network fð�; uÞ is parameterized by u and the
output for an input feature vector xx is denoted by fðxx; uÞ.
As a result, the output of a sequence XX ¼ ½xx1; . . . ; xxNx � is
transformed into fðXX; uÞ ¼ ½fðxx1; uÞ; . . . ; fðxxNx; uÞ�.

DeepOWDA trains the network by maximizing the ratio
of the OPW-based inter-sequence-class scatter GGb and the
intra-sequence-class scatter GGw in the subspace so that the
transformed sequences from different classes get better sep-
arated w.r.t. the OPW distance. However, to construct the
inter-class and intra-class scatters in the latent subspace, the
barycenters of the transformed sequences for all classes and
the OPW distances among barycenters need first to be calcu-
lated, which require solving minimization problems over
transports and depends on the network to be learned.

Taking a closer look at Eqs.(5), (14), and (17), we can find
that for given training sequences, the barycenter sequence mm
and covariance GG are functions of the optimal transports
TTc�

k ; k ¼ 1; . . . ; Nc between the training sequences and the
corresponding barycenter for each class c ¼ 1; . . . ; C, and
the between-class scatter GGb is a function of the optimal
transports TT �cc0 ; c; c

0 ¼ 1; . . . ; C between barycenters of differ-
ent classes. To make the objective tackle, we first calculate
the barycenters as well as the related intra-class optimal
transports TTc�

k ; k ¼ 1; . . . ; Nc; c ¼ 1; . . . ; C and inter-class
optimal transports TT �cc0 ; c; c

0 ¼ 1; . . . ; C from the original
sequences. We fix these inter-class and intra-class optimal
transports to construct the barycenters and scatters in the
latent subspace. For the c-th sequence class, the barycenter
sequence mmc ¼ ½mmc

i ; i ¼ 1; . . . ; L� is constructed as

mmc
i ¼

XNc

k¼1

XNk

j¼1
TTc�

k ði; jÞfðxxck
j ; uÞ; i ¼ 1; . . . ; L: (20)

where xxck
j is the jth observation of the k-th sequence sample

of the c-th class.
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The covariance is calculated as:

GGc ¼
XNc

k¼1

XL
i¼1

XNk

j¼1
tkij
�ðmmc

i � fðxxck
j ; uÞÞðmmc

i � fðxxck
j ; uÞÞT :

(21)

The between-class scatter is calculated as:

GGbðcc0Þ ¼
XL
i¼1

XL
j¼1

tcc
0

ij

�ðmmc
i � mmc0

j Þðmmc
i � mmc0

j ÞT : (22)

The overall intra-class scatter and inter-class scatter are
computed by Eqs. (15) and (18). Here, we use the intra-class
and inter-class optimal transports in the original space to
approximate those in the subspace. The optimal transports
in the original space reflect the essential correspondences
between original sequences. Tominimize the intra-class scat-
ter, the correspondences between feature vectors with large
transport probabilities from sequences of the same class are
further enhanced. Therefore, the optimal transports in the
subspacemay not change toomuch from those in the original
space. In addition, since the transportmatrices build the opti-
mal correspondences between features in the original
sequences under the OPW distance, discriminating sequen-
ces according to such correspondences is also likely to lead
to better separability between different sequence classes,
even if the optimal transports change in the subspace.

The original Fisher criterion is known to cause the so-called
class separation problem, i.e., it overemphasizes distant class
pairs with large inter-class distances. This achieves higher
rewards because the Fisher criterion maximizes the sum of
pairwise inter-class distance. As a result, in the learned sub-
space, the distances between classes that are already sepa-
rated become larger, but the neighboring classes are more
difficult to distinguish. This problem is exacerbated when
using deep neural networkswith strong fitting capabilities.

To alleviate this problem, following [19], we also apply a
reformulated objective to DeepOWDA. Let ai; i ¼ 1; . . . ; C �
1 denote the eigenvalues of GG�1w GGb in descending order, and
vvi; i ¼ . . . ; C � 1 denotes the corresponding eigenvectors.
Each ai can be viewed as measuring the discriminative
capacity of the direction of vi. Different from maximizing
the sum of all eigenvalues as in the original Fisher criterion,
which may overemphasis the largest few ai, we only maxi-
mize the sum of the top k eigenvalues that are smaller than
a pre-set threshold �. The loss function of DeepOWDA is
formulated as follows.

maxu
1

k

Xk
i¼1

ajþi

s:t:ajþ1 < �;aj � �;

GG�1w GGbvi ¼ aivi; i ¼ 1; . . . ; C � 1:

(23)

This formulation forces the network to discriminate con-
fusing sequence classes and gain more discriminative power.
Each eigenvalue can take the derivative w.r.t. the parameters
and the loss function Eq.(23) is differentiable. The deep net-
work is trained by back-propagation. During training, in each
mini-batch, sufficient features from all classes are needed to

estimate the scatters. Thus the batch size should be suffi-
ciently large.

Given training sequences, the barycenter of each class is
calculated in the original space to learn the projection. In
the learned subspace, the barycenters and the correspond-
ing optimal transports between the training sequences to
them may change. Therefore, determining the barycenters
and learning the projection are interlaced, as solving one
depends on the other. Our solution implicitly assumes that
salient temporal correspondences are often preserved after
transformation; thus, the optimal transports in the original
space can be used to approximate those in the reduced low-
dimensional subspace (the barycenters and scatters are
actually based on the optimal transports). After projection,
the sequences of the same class are more concentrated to
the barycenter and the barycenters of different classes are
further away w.r.t. the OPW distance. Therefore, sequences
from different classes are better separated.

In some cases, such optimal transports may be quite dif-
ferent in the original space and the subspace, additional
confusions may be introduced due to the change of optimal
transports in the subspace learned with the optimal trans-
ports in the original space. To address this problem, we can
employ an alternating optimization scheme. Specifically, we
learn an initial network using the optimal transports in the
original space, use the network to transform the training
sequences, and then re-infer the barycenters and associated
optimal transports from the transformed sequences. The
updated optimal transports in the subspace are used in turn
to re-train the network. The two procedures repeat itera-
tively until the subspace cannot be improved anymore. We
denote such an iterative solution by DeepOWDA-ite. The
iterative process can also be applied to linear OWDA, which
we denote by OWDA-ite. In this case, OWDA and Deep-
OWDA can be viewed as the 1-iterations of OWDA-ite and
DeepOWDA-ite. However, the iterative process not only
increases the computational complexity greatly but also
does not necessarily guarantee convergence in theory.

Complexity. Let Nb denote the number of training sequen-
ces per class in each batch. The complexity of DeepOWDA
per iteration is OðC2L2q2 þ CNbLTq

2 þ q3Þ. We fix the num-
ber of iterations to 500 in our experiments.

5 EXPERIMENTS

In this section, we evaluate the performances of the pro-
posed linear and deep OWDA methods on four 3D-action
datasets.

5.1 Datasets

TheMSR Sports Action3D dataset [34], [56] contains 557 depth
sequences captured by Kinect camera from 20 sports actions.
Ten persons performed each action for two or three times.
The skeleton joint positions of humans are also available in
this dataset. In [34], [57], the authors split the dataset into a
training set and a test set, where the training set includes the
sequences performed by about half of the persons and the
test set includes the rest. We follow this experimental setup
and report our results on the test set. The MSR Daily Activi-
ty3D dataset [34] contains 320 daily activity sequences from
16 activity classes. The sequences were captured by a Kinect
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device. Ten subjects performed each activity in two poses.
We follow the split of the dataset as in [34], [57] again and
report our results on the test set.

The ChaLearn Gesture Recognition dataset [58], [59] con-
tains 955 Italian gesture sequences captured by Kinect cam-
era from 20 different Italian gestures. Because we focus on
individual sequence classification rather than sequence
detection or segmentation, we follow [37], [60], [61] to per-
form experiments on the segmented sequences given by the
ground-truth segments. Each segmented sequence contains
only one gesture instance. 27 persons performed these ges-
tures. Other annotations of this dataset include the fore-
ground segmentation and joint skeletons. This dataset
includes training set, validation set, and test set. Follow-
ing [37], [60], [61], we learn the projections and train the
classifiers on the training set, and report the results on the
validation set.

The NTU RGB+D dataset [62] contains 56,880 action sam-
ples from 60 action classes. The action videos are performed
by different subjects and recorded from different views. For
each sample, the 3D coordinates of 25 major body joints per
subject at all frames are available. The dataset provides two
standard evaluation protocols. In the Cross-Subject (CS)
evaluation, the videos of different subjects are split into
training and testing groups. The training and testing sets
contain 40,320 and 16,560 action sequences, respectively. In
the Cross-View (CV) evaluation, the videos from different
viewpoints are split into training and testing groups. The
training and testing sets contain 37,920 and 18,960 action
sequences, respectively.

5.2 Experimental Setup

Implementation Details. We perform zero-centralization on
original frame-wide features for OWDA and divide the
frame-wide features by 10 for DeepOWDA unless otherwise
specified. For DeepLDA and DeepOWDA, the neural net-
work for transformation is a three-layer perceptron, each
fully connected layer is followed by a ReLU nonlinear func-
tion, and L2 regularization is applied to the outputs. The
number of nodes in all hidden layers is fixed at 1024.

Classification. We extract a feature vector from each frame
as the observation of the frame. In this way, we represent
each video by a sequence of observations. For evaluation,
we employ the proposed linear and deep OWDA methods
to project the observations in sequences onto subspaces
with different dimensions. In the learned subspaces, we
employ two sequence classifiers to classify the transformed
sequences: the SVM classifier and the nearest neighbor
(NN) classifier. For the SVM classifier, we first encode each
sequence of observations into a fixed-dimensional vector by
the unsupervised rank pooling [37]. Rank pooling learns
two linear functions to rank the forward and reverse timing
orders of the observations by the support vector regression,
respectively. The parameters of the two linear functions are
concatenated to form the pooling vector. Then, we train lin-
ear SVMs by taking these resulting vectors as input. We
determine the hyper-parameter C of the linear SVMs by
cross-validation. At the testing phase, we encode the test
sequence of observations into a vector by rank pooling, and
then employ the leaned SVMs to classify the encoded
vector.

For the NN classifier, we employ the OPW distance as
the dissimilarity measure between two sequences. Specifi-
cally, for a test sequence, we calculate its OPW distance to
all training sequences. We predict its class label as the label
of the training sequence which has the smallest OPW dis-
tance with it among all training sequences.

Performance Measures. We adopt the accuracy and MAP
(mean average precision) as performance measures. For the
SVM classifier, we train a multi-class SVM to evaluate the
classification accuracy. We train a binary SVM for each class
and use the scores to rank all training encoded vectors to eval-
uate the MAP. Additional evaluations by using the multi-
class precision and recall as performance measures with this
classifier are presented in the supplementary file , which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3050750.
For the NN classifier, to evaluate the MAP, we view each test
sequence as a query to rank all training sequences with the
OPWdistance.

5.3 Ablation Study

Influence of Hyper-Parameters. We set the values of the hyper-
parameters �1, �2, and d of OPW as suggested in [2] on the
first three datasets when the same frame-wide features are
used as in [2]. When using the raw-skeleton-based features,
we set �1, �2, and d of OPW on the MSR Action3D dataset to
10, 0.1, and 12, respectively, following the suggested setting
on the MSR Activity3D dataset, since the two datasets are
relatively similar. In [2], �2 was fixed to 0.1 for all datasets,
and OPW is not sensitive to �1. Since �1, �2, and d influence
our method through OPW distance, our method should
share similar sensitivities to them. The NTU dataset is not
evaluated in [2]. We fix �1, �2, and d of OPW to 10, 0.1, and
1, respectively.

In addition to the reduced dimension q0, both linear
OWDA and DeepOWDA only introduce one additional
hyper-parameter, i.e., the length L of the barycenter per
class. Fig. 2 shows the influence of L on linear OWDA on
the MSR Action3D dataset with the 192-dimensional
relative-angles-based features. When L is too small, the
barycenter cannot capture enough temporal structures, and
hence some temporal information is lost. When L is too
large, the barycenter may contain some noisy elements,
resulting in overfitting. In most cases, L ¼ 8 achieves satis-
factory results. We simply fix L to 8 in all the following
experiments.

Training Time. For linear OWDA, in most cases, the calcula-
tion of the barycenter converges in about 10 iterations. The pro-
cedures after learning the barycenters are closed-form

Fig. 2. Performances as functions of L by (a) the SVM classifier and (b)
the NN classifier on the MSR Action3D dataset.
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calculations. Therefore, the practical training time is not too
long. On the MSR Action3D dataset with the 192-dimensional
relative-angles-based features, the MSR Activity3D dataset
with the 390-dimensional pairwise-joint-position-based fea-
tures, and the Chalearn dataset with the 100-dimensional histo-
gram-based features, the training times of linear OWDA are
43.1753, 265.7691, 385.8162 (sec), respectively.

Effects of Different Frame-Wide Features. The proposed
OWDA and DeepOWDA can take sequences with any
frame-wide features as input. We compare five different
types of frame-wide features on the MSR Action3D dataset,
including the 60-dimensional raw skeleton-based features
where all joint locations in a frame are concatenated to form
the feature; the 60-dimensional preprocessed motion-based
features used in [40], the 120-dimensional frame-wide fea-
tures based on velocity and acceleration of the joint posi-
tions used in [36], [63], the 192-dimensional pairwise-joint-
angle-based features provided by the authors of [34], which
are the relative angles of all the 3D joints w.r.t. other joints;
and the 390-dimensional pairwise-joint-position-based fea-
tures provided by the authors of [34], [57].

Results by OWDA are shown in Fig. 3 and results by
DeepOWDA are shown in the supplementary file available
online. The reduced dimension is uniformly sampled
according to the total linearly independent dimensions and
the x-axis in Fig. 3 represents the sampling index. The
indexes of 1 to 6 correspond to dimensions of 5 to 55 with an
interval of 10 for Skeleton and Motion-based features, 5 to
105 with an interval of 20 for velocity and acceleration fea-
tures, 5 to 30 with an interval of 5 for the relative angle-based
features, and 5 to 305 with an interval of 60 for relative
position-based features. The dimensions of the relative posi-
tion, velocity and acceleration-based frame-wide features
are larger, so DeepOWDA can retain more dimensions,
encode more information, and achieve better performances.
On all datasets, the number of layers of the neural network
and the number of hidden nodes in the middle layers are
fixed to a large number. Due to the small size of the MSR
Action3D dataset, DeepOWDA may overfit to the original
joint positions. On the other hand, the relation position and
motion-based features reduce the dependence on absolute
positions. For linear OWDA, the raw skeleton-based features
with a small dimension achieve performances comparable to
other high-dimensional features. For different classifiers, the
performances of different features are also different.

In order to simplify and clarify the process of using
OWDA and DeepOWDA, in the following experiments, we
use the raw skeleton-based frame-wide features on all

datasets except the ChaLearn dataset, unless otherwise
specified. On the ChaLearn data set, we directly employ the
histogram-of-joint-positions-based frame-wide features pro-
vided by the authors of [37]. Specifically, for each frame, the
relative locations of body joints are quantized w.r.t. a pre-
clustered codebook, and the histogram of the quantized
codewords serves as the feature with a dimensionality of
100. On the NTU dataset, some actions involve interactions
between two subjects and all joints of both subjects are
recorded. When only one subject appears in a frame, the
corresponding joint positions of the second subject are set to
0. On this dataset, the dimensionality of the raw skeleton-
based frame-wide feature is 150.

Influence of the Weight Sequence gg. The barycenter learn-
ing algorithm jointly learns the supporting points and
their weights. Approximately, each supporting point in
the barycenter can be regarded as a stage or state of the
sequence class and its weight can be viewed as the propor-
tion of the duration of the stage. If a stage lasts for a long
time in most samples of a class, then this stage may indeed
be relatively important and its weight should be larger
than other stages.

We can also fix the weights to uniform weights and only
learn the supporting points when learning the barycenter.
In this case, the proposed methods are denoted by OWDA-
uni and DeepOWDA-uni, where the optimal transports are
updated in procedure 1 and the supporting points are
updated in procedure 2. Fig. 4 compares the performances
of OWDA/DeepOWDA with learned weights and fixed
uniform weights on the MSR Action3D dataset. We observe
that OWDA-uni/DeepOWDA-uni achieves comparable
results with OWDA/DeepOWDA. Since the length of bary-
centers is set much smaller than the average length of the
training sequences, only stages with long enough durations
can be captured. Therefore, the weights of all stages may
not be too small and have less impact on performances.
However, learning the weights jointly does not increase the
learning complexity much, while can increase flexibility
and may be useful when the length of barycenters is large.

Effect of the Iterative Solutions. OWDA and DeepOWDA
approximate the optimal transports in the subspace by
those in the original space. We compare them with OWDA-
ite and DeepOWDA-ite which iteratively update the trans-
formation and optimal transports. For OWDA-ite and Deep-
OWDA-ite, we iterate 5 times. The comparisons on the MSR
Action3D dataset are shown in Fig. 4. The performance deg-
radation of DeepOWDA-ite may be caused by the change in
the amplitude of the transformed frame-wide features

Fig. 3. Comparison of different types of frame-wide features. (a) Accuracies with the SVM classifier, (b) MAPs with the SVM classifier, (c) accuracies
with the NN classifier, and (d) MAPs with the NN classifier as functions of the dimensionality of the subspace on the MSR Action3D dataset.
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during iterations, which affects the inference of the optimal
transports in the subspace by OPW. We observe that the dif-
ferences in performances of OWDA-ite and OWDA are very
small for the SVM classifier. Since the iterative process can-
not guarantee the decrease of the objective function,
OWDA-ite cannot improve the performances.

Classification With Different Sequence Distances. Although
OWDA and DeepOWDA learn the transformation based on
the OPW distance, other sequence distances can also be
applied in the learned subspace. On theMSRAction3D data-
set and the MSR Activity3D dataset, we use the nearest
neighbor classifier with the DTW, SoftDTW (denoted by
SDTW), andCTWdistances to classify the original sequences
and the transformed sequences, where CTW preserves 95%
of energy. Fig. 5 compares the performances of using these
distances and the OPW distance. All sequences are from the
same modal, the maximally correlated subspace learned by
CTW may not be discriminative and loses useful informa-
tion, therefore, CTW performs inferior to other distances.
Although OWDA and DeepOWDA construct separability
among sequence classes based on the OPW distance, they
can also greatly improve the DTW and SoftDTW distances.
In some cases, the DTWand SoftDTWdistances even outper-
form the OPW distance in the learned subspaces. This may
be because the transformed sequences are more discrimina-
tive by enhancing temporal information and the DTW and
SoftDTW distances with stricter temporal constraints can
better separate them.

5.4 Comparison With Other DRS Methods

We compare the proposed OWDA and DeepOWDA with
other dimensionality reduction methods for sequences.
OWDA employs the Fisher criterion. As discussed in Sec-
tion 2, different criteria are generally suited for different cases.

In addition, OWDA can also be extended by employing other
criteria. Therefore, to obtain a fair comparison, we only com-
pare with those methods based on Fisher criterion, including
LDA, DeepLDA, and LSDA. For LSDA, we use the same
hyper-parameters as in [4], [5]. For both linear OWDA and
DeepOWDA, the hyper-parameter L is fixed to 8 in all our
experiments. We adapt the implementations of IBP in [54]
and Newton’s update in [53] to perform the computation of
the OPW barycenter. We implement DeepOWDA using
Keraswith the Theano backend.

LDA and DeepLDA are based on the i.i.d. assumption. To
apply them to sequence data, we view the observations in
sequences as independent samples with the same class
label. We employ the drtoolbox [64] to implement LDA. We
employ Vahidoo’s Keras code1 to implement DeepLDA. In
addition, we also evaluate the performances using both
classifiers in the original space. Our implementation of
OWDA and DeepOWDA is available2.

Results on the Action3D Dataset. On this dataset, the mag-
nitude of the real-world raw skeleton data is not normal-
ized. To avoid numerical problems when calculating OPW
distances, when using the NN classifier in the subspace, we
divide the absolute joint location coordinates by

ffiffiffi
2
p

and
divide the transformed features by

ffiffiffiffiffiffi
2q0
p

and 2 for OWDA
and DeepOWDA, respectively. The results of different DRS
methods with different reduced dimensions are shown in
Fig. 6. We can observe that the proposed linear OWDA out-
performs other linear DRS methods by a significant margin
with both classifiers. Compared with the original sequences
with 60-dimensional observations, OWDA achieves better
accuracy and MAP with a margin of more than 5% when

Fig. 5. Comparisons with using different sequence distances in the NN classifier. (a) Accuracies on the MSR Action3D dataset, (b) MAPs on the MSR
Action3D dataset, (c) accuracies on the MSR Activity3D dataset, and (d) MAPs on the MSR Activity3D dataset as functions of the dimensionality of
the subspace.

Fig. 4. Comparisons with OWDA-uni, DeepOWDA-uni, OWDA-ite, DeepOWDA-ite. (a) Accuracies with the SVM classifier, (b) MAPs with the SVM
classifier, (c) accuracies with the NN classifier, and (d) MAPs with the NN classifier as functions of the dimensionality of the subspace on the MSR
Action3D dataset.

1. https://github.com/VahidooX/DeepLDA
2. https://github.com/BingSu12/OWDA
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more than 25 dimensions are preserved for the SVM classi-
fier, and achieves comparable accuracy and MAP using
only 15 dimensions for the NN classifier.

DeepOWDA outperforms the non-linear DeepLDA by a
large margin for both classifiers when more than 25 dimen-
sions are preserved. It also achieves much higher MAPs
than linear OWDA and other linear DRS methods. Com-
pared with the original 60-dimensional observations, Deep-
OWDA using only more than 15 dimensions achieves better
performances for the SVM classifier and improves the MAP
by a margin of 10% for the NN classifier.

Results on the Activity3D Dataset. To avoid numerical prob-
lems, when using the NN classifier, we divide the absolute
joint location coordinates by 2 and divide the transformed
features by

ffiffiffiffi
q0
p

and 2 for OWDA and DeepOWDA, respec-
tively. Fig. 7 depicts the performances of different DRSmeth-
ods as functions of the reduced dimension by both classifiers
on the Activity3D dataset. For the SVM classifier, OWDA and
DeepOWDA with more than 35 dimensions achieve slightly
better accuracies than classifying the original sequences
directly without any DRS methods. Generally, OWDA and
DeepOWDAalso outperform other DRSmethods.

For the NN classifier, LSDA generally obtains better accu-
racies than linear OWDA, but OWDA achieves much better
MAPs than other linear DRSmethods. DeepOWDA achieves
the best accuracy andMAP. Especially, DeepOWDA outper-
forms other methods by a margin of about 20% onMAP. For
a test sequence, the NN classifier only employs its nearest
training sequence when calculating the accuracy, but ranks
all training sequences according to the OPW distances w.r.t.
it when calculating the MAP. The objective of OWDA and
DeepOWDA is to minimize the overall dispersion for
sequence classes and maximize the overall separability
among classes. This makes most sequences from different
classes more different, but does not pay special attention to

the margins among classes. For a test sequence, the nearest
training sequence may not belong to the same class due to
noises or variances, but generally, most training sequences
from the same class will be ranked in front of those from
different classes.

Results on the ChaLearn Dataset. Fig. 8 presents the
results of different DRS methods as functions of the
reduced dimension by both classifiers on the ChaLearn
dataset. For the SVM classifier, DeepOWDA performs
comparable with DeepLDA, and both outperform linear
methods. Linear OWDA outperforms other linear methods
by a margin of about 5% on most reduced dimensions.
OWDA is the only linear DRS method that is able to
improve the original features. Moreover, OWDA achieves
this by preserving only 25 dimensions. This indicates that
OWDA enhances the temporal separability and discards
noises successfully.

The performances of LDA and kLDA are far below those
of other methods. The reason is that the observations in
sequences are not independent. Performing LDA and kLDA
forcibly by viewing them as independent samples not only
aggravates the within-class ambiguity, but also may break
their temporal relations. Moreover, LDA and kLDA can
preserve C � 1 ¼ 19 dimensions at most. It is difficult to sep-
arate sequences from different classes with such few dimen-
sions. In contrast, since the barycenter of each class has L ¼ 8
supporting points, OWDA is able to preserve LC � 1 ¼ 159
dimensions, if d > 159.

For the NN classifier, OWDA, LSDA, DeepOWDA, and
DeepLDA improve the original features greatly. Compared
with LSDA, OWDA achieves comparable accuracy andmuch
higher MAP. Specifically, OWDA outperforms the original
features by a margin of 20%. The MAPs of OWDA are 5%
higher than those of LSDA on almost all dimensions. Com-
pared with DeepLDA, DeepOWDA achieves comparable

Fig. 6. (a) Accuracies with the SVM classifier, (b) MAPs with the SVM classifier, (c) accuracies with the NN classifier, and (d) MAPs with the NN classi-
fier as functions of the dimensionality of the subspace on the MSR Action3D dataset.

Fig. 7. (a) Accuracies with the SVM classifier, (b) MAPs with the SVM classifier, (c) accuracies with the NN classifier, and (d) MAPs with the NN classi-
fier as functions of the dimensionality of the subspace on the MSR Daily Activity3D dataset.
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accuracy and much higher MAP. Specifically, DeepOWDA
outperforms the original features by a margin of about 40%
onMAP. TheMAPs of DeepOWDA are 5% higher than those
of DeepLDAonmost dimensions.

Results on the NTU Dataset. Due to the large number of
sequence samples, calculating the intra-class and inter-class
scatters from all frames in all training sequences to obtain
the linear transformations is prohibitively time-consuming,
and simple SVM and NN classifiers may be less effective.
Therefore, we only evaluate DeepLDA and DeepOWDA
with mini-batch based optimization, and use the deep inde-
pendent recurrent neural network (IndRNN) [44], [65] for
classification in the learned subspaces. In [44], [65], a pre-
processing alignment is applied to the original skeleton
data so that the joint locations of the same subject identity
lie in the same data array over time. Since the processed
data are not provided and there is no explanation of how
such alignment is performed, we only use the unaligned
skeleton-based frame-wise features, this leads to degraded
performances. We re-implement IndRNN on the same
unaligned data for a fair comparison. All the hyper-
parameters of IndRNN and experimental settings on this
dataset remain the same as in [44], [65]. The comparisons
are shown in Fig. 9. DeepOWDA outperforms DeepLDA in
both CS and CV settings.

5.5 Comparison With State-of-the-Art Methods

Our goal is not to design an end-to-end sequence classifica-
tion method, but to develop a DRS method that produces
low-dimensional discriminative temporal representations.
Our method can serve as a ubiquitous component in differ-
ent classification pipelines to improve the original represen-
tations and benefit the subsequent classifiers. For example,
recurrent neural networks (RNNs) are seldom used for

feature learning, but often as classifiers by taking hand-
crafted or CNN-learned frame-wide features as input. Our
method can be applied to these features before they are fed
into RNNs. In this way, RNNs can estimate fewer parame-
ters and better capture the temporal dependencies.

On the ChaLearn dataset, we have shown that ourmethod
outperforms other DRS methods and improves different
sequence classification methods. We compare our results by
using the frame-wide features in [37] and the SVM-based
classifier with some other methods. Multi-class precision,
recall, and F-score are used as performance measures as
in [5], [28], [61], [66], [67]. Comparisons are shown in Table 1.
DeepOWDA followed by a relatively simple SVM classifier
with rank pooling outperforms other methods significantly
using only 55 percent of the original dimension.

On the MSR Activity3D dataset, covariance representations
and kernel-SVM based methods such as Ker-RP-POL [36] and
Kernelized-COV [68] achieve superior results. Kernelized-
COV employs the Kernelized covariance of all frame-wide fea-
tures of a sequence as the representation of the sequence. Our
proposed OWDA can be applied before Kernelized-COV to
enhance the temporal representations. Specifically, we employ
the 120-dimensional velocity-and-acceleration-based frame-
wide features provided in [36]. We perform the proposed
OWDA to reduce the dimension to 80 and then employ
Kernelized-COV for classification. As shown in Tab. 2, the
result obtained by the linear OWDA in this way has already
outperformed the state-of-the-art results, so we did not evalu-
ate DeepOWDA on this dataset.

On the MSR Action3D dataset, we extract the 120-dimen-
sional velocity-and-acceleration-based frame-wide features
ourselves, reduce the dimension to 80 by OWDA, and use
Kernelized-COV for classification. As in Fig. 5 of the supple-
mentary file available online, we also apply different
dimensionality reduction methods to such features and use

Fig. 9. Accuracies with the IndRNN classifier as functions of the
dimensionality of the subspace in (a) the CS setting and (b) the CV set-
ting on the NTU RGB+D dataset.

TABLE 1
Comparison With Other Methods on the ChaLearn Dataset

Method Precision Recall F-score

Wu et al. [66] 0.599 0.593 0.596
Pfister et al. [61] 0.612 0.623 0.617
Fernando et al. [67] 0.753 0.751 0.752
Cherian et al. [28] 0.753 0.752 0.751
LSDA+SVM [5] 0.768 0.767 0.767
LT-LDA+SVM [33] 0.784 0.783 0.783
OWDA+SVM 0.773 0.773 0.772
DeepOWDA+SVM 0.827 0.826 0.826

Fig. 8. (a) Accuracies with the SVM classifier, (b) MAPs with the SVM classifier (c) accuracies with the NN classifier, and (d) MAPs with the NN classi-
fier as functions of the dimensionality of the subspace on the Chalearn Gesture dataset.
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SVM or NN for classification. Comparisons are shown in
Table 3. We observe that DeepOWDA using a relatively sim-
ple classifier obtains comparable results with LSTM-based
models.

On the NTU RGB+D dataset, we use the proposed Deep-
OWDA to reduce the 150-dimensional original skeleton
based frame-wise features to 95 and employ the densely
connected IndRNN for classification. Different from the
experiments in Fig. 9, since the dimension is reduced, we
reduce the number of filters in the first dense layer by half
and keep the growth rate unchanged. As a result, the num-
ber of parameters is reduced from 2,314,428 to 1,804,740.
The comparisons with RNN-based methods without data
augmentation are shown in Table 4, where “IndRNN” indi-
cates the results reported in [44], where the original skeleton
based frame-wise features are preprocessed by aligning the
subject identities, and “Ori+IndRNN” indicates the results

of IndRNN by directly taking the original skeleton based
frame-wise features as input.

DeepOWDA performs slightly inferior to the original fea-
tures. The possible reasons are as follows. 1. All joint posi-
tions contain useful information for distinguishing the large
number of actions. Reducing the dimension by DeepOWDA
loses some discriminative information. 2. Sequences in this
large-scale dataset show large within-class variations and
may not be sufficiently represented by a single barycenter
per class. Adding the number of barycenters per class may
further increase the performances of DeepOWDA. 3.
IndRNN and DeepOWDA have different objective func-
tions and distinguish sequences in different ways. Maximiz-
ing the separability constructed by DeepOWDA will not
necessarily preserve or enhance the discriminative informa-
tion required by IndRNN. 4. We directly use IndRNN with
hyper-parameters tuned for the original sequences to clas-
sify the transformed sequences by DeepOWDA. Using a
validation set to select appropriate hyper-parameters may
further improve the final performance.

The performance of DeepOWDA is gapped w.r.t state-of-
the-art results. The overall performance may be related to
many factors, such as preprocessing, hyper-parameters, com-
puting resources, and classifiers. E.g., applying advanced
skeleton-based action classification methods on the subspace
learned byDeepOWDAmay further improve the final perfor-
mance. However, since our goal is not to achieve state-of-the-
art results on this specific dataset, we did not perform any
pre-processing or tune the hyper-parameters. We aim at eval-
uating the effectiveness of the proposed dimensionality
reduction method. As shown in Table 4, DeepOWDA using
only 63.3% of the original dimensions obtains results compa-
rable to the original features by the IndRNN classifier. After
transforming the sequences by DeepOWDA, IndRNN can not
only adopt a lighter weight model with much fewer learnable
parameters, but also converge faster during training, as
shown in Fig. 10. This is especially suitable in resource-con-
strained situations.

TABLE 4
Comparison With State-of-the-Art Methods

on the NTU RGB+D Dataset

Method CS CV

PLSTM [62] 62.9% 70.3%
SkeletonNet [76] 75.9% 81.2%
Clips+CNN+MTLN [77] 79.6% 84.8%
Enhanced Visualization+CNN [78] 80.0% 87.2%
HCN [79] 86.5% 91.1%
TCN+TTN [80] 77.6% 84.3%
JL_d+RNN [81] 70.3% 82.4%
STA-LSTM [82] 73.4% 81.2%
Pose conditioned STA-LSTM [71] 77.1% 84.5%
ST-LSTM [43] 69.2% 77.7%
EleAtt-GRU [83] 79.8% 87.1%
TS-SAN [84] 87.2% 92.7%
SkeleMotion + Yang et al. [85] 76.5% 84.7%
ARRN-LSTM [86] 80.7% 88.8%
IndRNN [44] 84.9% 90.4%
Ori + IndRNN 80.8% 87.1%
DeepOWDA + IndRNN 79.0% 86.6%

TABLE 2
Comparison With State-of-the-Art Methods

on the MSR Activity3D Dataset

Method Accuracy

Actionlet Ensemble [34] 85.8%
Moving Pose [63] 73.8%
COV-JH-SVM [35] 75.5%
Ker-RP-RBF [36] 96.3%
Kernelized-COV [68] 96.3%
LRTS [69] 80.6%
Qiao et al. [70] 75.0%
Baradel et al. [71] 90.0%
Luo et al. [72] 86.9%
Ji et al. [73] 81.3%
DSSCA SSLM [74] 97.5%
MDMTL [75] 93.8%
OWDA+Kernelized-COV 98.1%

TABLE 3
Comparison With State-of-the-Art Methods

on the MSR Action3D Dataset

Method Accuracy

Actionlet Ensemble [34] 88.2%
Moving Pose [63] 91.7%
COV-JH-SVM [35] 80.4%
Ker-RP-RBF [36] 96.9%
Kernelized-COV [68] 96.2%
GRP [28] 81.7%
LT-LDA+Kernelized-COV [33] 91.9%
TS-LSTM-GM [40] 91.2%
LT-LDA+LSTM-GM [33] 92.7%
FTP-SVM [41] 90.0%
Bi-LSTM [41] 86.2%
OWDA+Kernelized-COV 87.6%
LDA+SVM 38.1%
LSDA+SVM 67.8%
DeepLDA+SVM 84.6%
OWDA+SVM 74.7%
DeepOWDA+SVM 92.3%
DeepLDA+NN 78.8%
DeepOWDA+NN 93.8%
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6 CONCLUSION

In this paper, we have presented a linear DRS method, i.e.,
OWDA, and its deep extension, i.e., DeepOWDA, to map
the non-independent observations in sequences onto a low-
dimensional subspace, so that the entire sequences from dif-
ferent classes are better discriminated with the OPW dis-
tance. To manipulate the structured sequences with various
lengths, we learn the OPW barycenter of the sequence sam-
ples from a class to represent the average temporal struc-
tures and evolutions. We construct the covariance of the
class in such a way that the trace of the covariance measures
the variability of the OPW distances between the sequence
samples and the barycenter. Similarly, we construct the
pair-wise inter-class scatter so that the trance of the scatter
measures the OPW distance between the corresponding
barycenters of the two classes. We show that the intra-class
and inter-class scatters are actually the weighted sums of all
the pairwise outer-products between observations in
sequences or elements of barycenters. Therefore, all local
relationships are learned and incorporated. Experimental
results on four 3D action datasets demonstrate the effective-
ness of the proposed OWDA and DeepOWDA.
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