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I2C: Invertible Continuous Codec for High-Fidelity
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Abstract—Lossy image compression is a fundamental technology
in media transmission and storage. Variable-rate approaches have
recently gained much attention to avoid the usage of a set of
different models for compressing images at different rates. During
the media sharing, multiple re-encodings with different rates would
be inevitably executed. However, existing Variational Autoencoder
(VAE)-based approaches would be readily corrupted in such cir-
cumstances, resulting in the occurrence of strong artifacts and the
destruction of image fidelity. Based on the theoretical findings of
preserving image fidelity via invertible transformation, we aim to
tackle the issue of high-fidelity fine variable-rate image compres-
sion and thus propose the Invertible Continuous Codec (I2C). We
implement the I2C in a mathematical invertible manner with the
core Invertible Activation Transformation (IAT) module. I2C is
constructed upon a single-rate Invertible Neural Network (INN)
based model and the quality level (QLevel) would be fed into the IAT
to generate scaling and bias tensors. Extensive experiments demon-
strate that the proposed I2C method outperforms state-of-the-art
variable-rate image compression methods by a large margin, espe-
cially after multiple continuous re-encodings with different rates,
while having the ability to obtain a very fine variable-rate control
without any performance compromise.

Index Terms—Image coding, image processing, rate-distortion.

I. INTRODUCTION

LOSSY image compression is one essential problem es-
pecially in such an information explosion era, due to

the increasing volume of visual data. A desired image com-
pression method would effectively lower the data redundancy
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with fewer bits consumption while better preserving the image
fidelity, for promoting applications of media sharing, storage,
and processing. In order to achieve this goal, numerous classical
image compression standards such as JPEG [2], JPEG2000 [3],
Webp [4], BPG [5], AVIF [6], and Versatile Video Coding
(VVC) [7] have been developed and widely utilized in various
practical applications. Over recent years, remarkable progress
has been made in learning-based image compression methods,
which have shown superior performance in common metrics
including PSNR and MS-SSIM. By exploiting the potent non-
linear transformation capabilities of DNNs, these methods [8],
[9], [10] achieve end-to-end learning through a vast number
of high-quality images, while minimizing the rate-distortion
cost. Despite considerable advancements, learning-based image
compression still poses challenges when it comes to adapting
to variable-rate compression. Most existing approaches involve
training multiple single-rate models for different rates, which
results in high storage and training costs.

To remedy the issue, enabling variable-rate control within
a single model based on the Variational Autoencoder (VAE)
framework has attracted research interest [1], [11], [12], [13],
[14], [15]. The researchers first try to achieve discrete rate adap-
tation using one single model. Choi et al. [11] introduced condi-
tional convolution and achieved variable rate through two-stage
training. Yang et al. [12] proposed the modulated autoencoder
and achieved discrete adjustable compression rates by different
Lagrange multipliers. Chen et al. [13] inserted a set of scaling
factors directly before the quantizer to achieve the discrete ad-
justable compression rates. However, the performance of these
methods would be dropped when conducting finer variable-rate
control. Thus, the topic of fine rate adaptation has attracted
more attention recently. Sun et al. [14] obtained continuously ad-
justable compression rate by linear interpolation. Cui et al. [15]
achieved continuous compression rate control by exponential
interpolation. Lin et al. [16] raised the scaling network, which
is purposefully developed to convert the scalar value of the
Lagrange multiplier to a vector, in order to scale the feature
map channel-wise and achieve variable rate adaptation. Song
et al. [1] conditioned on the quality map and achieved the
variable rate, which requires semantic segmentation labels for
training. Though these methods have the ability of fine variable-
rate compression control, they need additional gain modules or
semantic labels to maintain the performance.

Besides, in the current social-networking epoch, images
would be shared and transmitted multiple times among
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Fig. 1. Reconstructed images of variable-rate compression methods after different numbers of compression/decompression operations. It broadly occurs in image
sharing among social platforms. Severe artifacts and color shifts would appear (see regions in red circles) in the state-of-the-art VAE-based approach [1] once
multiple continuous re-encodings are executed, in contrast to fewer artifacts and higher fidelity results achieved by our proposed approach. High-fidelity preserving
with fine variable-rate control is the main advantage and novelty of our work.

numerous entities (e.g., one person may download a compressed
image from Facebook and then send it to his friend via WeChat
under another re-encoding). It would be particularly interesting
for a variable-rate image codec if the fidelity of images could
be preserved once continuous compression/decompression op-
erations are executed. However, state-of-the-art VAE-based
variable-rate approaches (e.g., Song et al. [1]) would be readily
corrupted once multiple continuous re-encodings are executed,
resulting in the fact that image quality would be tremendously
dropped. Strong artifacts and color shifts would appear, as
shown in Fig. 1. The main reason is that the autoencoder
transforms the image to a low-dimensional latent space and
irreversibly discards information before quantization, imposing
an implicit limitation on the reconstruction quality. To alleviate
information loss, Invertible Neural Networks [17], [18] have
gained much attention to effectively preserve fidelity. It is worth
noting that VAE-based variable-rate methods cannot be directly
fused into the INN-based framework since implementations of
their variable-rate control do not satisfy the bijective mapping
property. Whether it is possible to introduce conditional control
in the INN-based framework to achieve variable rate has not
been analyzed and derived from a theoretical basis so far.

In this paper, we first carry out in-depth theoretical analyses
and mathematical derivations of condition-based invertibility.
Based on the exploration of conditional control invertibility,
we propose the Invertible Continuous Codec (I2C). Invertible
Activation Transformation (IAT) is the core module of I2C that
exhibits a mathematical invertible property to avoid discarding
any information in the latent space to preserve high fidelity.
I2C is constructed upon a single-rate Invertible Neural Net-
work (INN) based model and the quality level (QLevel) would
be fed into the IAT to generate scaling and bias tensors. IAT and
QLevel together give I2C the ability of fine variable-rate control
while better preserving the image fidelity. We initially extend

the mathematical invertibility to the variable-rate image com-
pression. Moreover, the proposed image compression method
attempts to achieve finer control of multiple variable rates, by
presenting a compatible tensor-based Lagrange multiplier to
train the whole model. The contributions of our proposed method
are 4-folded:
� We propose an effective yet neat variable-rate image com-

pression method named Invertible Continuous Codec (I2C)
under the design of a conditional invertible manner to
achieve the high fidelity of reconstructed images, espe-
cially after multiple continuous variable-rate image com-
pression/decompression operations. This issue is rarely
investigated so far.

� In-depth theoretical analyses and mathematical derivations
of condition-based invertibility are provided. With the the-
oretical foundation to support it, the proposed I2C can be
easily applied to different INN frameworks.

� I2C achieves fine variable-rate control without any perfor-
mance compromise by storing only byte-level additional
information in the bitstream directly (e.g., once 2 bytes
are adopted, 216 = 65536 effective fine variable rates are
achieved).

� Extensive experiments demonstrate the superiority of our
proposed I2C in image fidelity preserving, rate-distortion
performance, and fine rate adaptation over three datasets,
including Kodak [19], CLIC [20], and DIV2K [21]. Be-
sides, we conduct comparison experiments on practical
biomedical and remote sensing images to show the ap-
plication potential of it.

This manuscript is an extension of our previous conference
paper [22], while we have made plenty of extensions includ-
ing 1) Thorough theoretical analyses and mathematical deriva-
tions of the condition-based invertibility, which is the footing
stone of our high-fidelity fine variable-rate image continuous
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re-encodings, are provided. With the theoretical foundation to
support it, our proposed I2C can be easily applied to different
INN frameworks. We present the rationality of I2C, which can be
considered as a kind of conditional invertible neural network, for
variable-rate image compression. We also present why the IAT
module can be integrated with affine coupling layers, to jointly
construct I2C and implement the invertible design, finally form-
ing conditional affine coupling layers. 2) The proposed I2C is
additionally implemented into other three INN-based single-rate
image compression architectures to evaluate the robustness of
our proposed method. We use three different Invertible Neu-
ral Networks from Incompressible-flow Network (GIN) [23],
NICE [24], and GLOW [25] instead of the original architec-
ture, initially proposed in RealNVP [26] and adopted by the
invertible block of baseline model [18], to verify that the pro-
posed I2C can adapt to different INN-based architectures. I2C
with different INN-based architectures are consistently able to
achieve fine variable-rate control while preserving high fidelity.
Such additional experiments show that I2C is a plug-and-play
method that can be readily integrated into INN-based single-
rate image compression frameworks to enhance their abilities
without harming invertibility. 3) To further facilitate the codec
efficiency and alleviate the computation burden, an optimized
model is redesigned according to the complementary analyses
of the characteristics of the network structure. Compared with
the previous model, the number of parameters of this optimized
version has been reduced by 1/3 without any performance com-
promise. 4) Supplementary experiments on finer variable-rate
control are conducted. The mechanism of achieving such ability
is analyzed and discussed in depth. The analysis shows that
the small amount of additional bitstream storage can generate
a large number of fine variable rates, which is quite practical
in real-world applications. 5) Variable-rate multiple continuous
re-encodings comparison experiments with 6 more single-rate
typical image compression methods are further carried out to
demonstrate the superiority of our proposed method. We also
add the comparison experiment with the variable rate method
of Lin et al. [16] to validate the effectiveness of our proposed
method further. Besides, we conduct supplementary comparison
experiments on practical biomedical and remote sensing images
to show its application potential.

II. RELATED WORK

In recent years, the application of neural networks in image
compression has attracted widespread attention. The Variational
Autoencoder (VAE) [8], [9], [10], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
[43], Invertible Neural Network (INN) [17], [18], [44], [45] and
Generative Adversarial Networks (GAN) [46], [47], [48], [49],
[50] based methods have achieved surprising results.

A. Learned Single-Rate Image Compression

The VAE-based framework is used as a nonlinear trans-
formation coding model, which is the main approach in the
learned image compression method. The works [8], [9], [10]
were the first to use CNN for end-to-end image compression and

inspired many learning-based image compression methods. The
work [10] introduced a hyperprior entropy model to capture the
zero-mean Gaussian distribution of the latent representations.
The works [27], [29] used the Gaussian model with the non-zero
mean to improve the ability to model latent representations.
Later works [27], [28], [29] further removed redundancy in
potential features using the context model. By using the global
similarity within the context, Li et al. [39] proposed a special
non-local operation for context modeling. To exploit a serial
decoding process for causal contextual entropy prediction in
latent space, Guo et al. [40] proposed the concept of separate
entropy coding. Further, the 3D-context entropy model [30],
multi-scale hyperprior entropy model [32], and discretized
Gaussian mixture model [33] were used to further improve the
entropy model. In addition, channel-wise module [34], attention
module [33], [35], non-local attention module [36], [51], and
content-weighted methods [43], [52], [53] were used to extract
better latent representations. Recently transformer was used
to capture long-range dependencies in probability distribution
estimation effectively and efficiently [54], [55], [56]. The first
successful attempt to apply a transformer-based method to image
compression was made by Qian et al. [54]. Lu et al. [56] proposed
the neural transformation unit as the basic module. It consists of
a Swin Transformer block and a convolutional layer for better
information embedding. In addition, Cai et al. [43] proposed
the deep learning-based unified framework that allows for rate-
distortion optimization for ROI image compression. Abhijith
Punnappurath and Michael S. Brown investigated the ability of
deep image compressors to be ”aware” of the additional goal
of raw reconstruction. David et al. [42] proposed a two-step
learning-based image compression method to build convolution
neural networks for the analysis of gigapixel images using only
weak labels at the image level.

Most learning-based image compression methods need to
train different network models for various compression rates,
which not only increases the storage of computational resources
but also is not compatible with practical applications. Therefore,
using one single model to achieve variable rate adaptation was
widely studied.

B. Learned Variable Rate Image Compression

Initially, LSTM networks [57], [58], [59] control different
compression rates by the different number of iterations. The
more iterations, the clearer the reconstructed image would
be. However, the LSTM-based approach cannot outperform
JPEG2000 [3] in rate-distortion performance and would not
obtain continuous compression rates. LSTM-based approaches
use a large number of 3× 3× 512× 512 network layers, such
a structure can make the network computationally slow. In
addition, the iterative procedure is also time-consuming. Thus it
is not suitable for practical applications. Then Choi et al. [11] in-
troduced conditional convolution in the autoencoder framework
to achieve variable-rate adaptation with a single model through
two-stage training.

However, while the variable rate is achieved, the rate-
distortion performance degrades and there is a dilemma in
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choosing the appropriate Lagrange multiplier and quantization
step size for forward inference. Yang et al. [12] proposed a
modulated autoencoder that achieved the discrete adjustable
compression rate with a single model by different Lagrange
multipliers. Thesis et al. [9] first trained the model with high
bits per pixel (bpp) and then fixed the network model parameters
to train the scaling parameters for different compression rates.
However, the network model suffered from incongruity with the
scaling parameters, especially in low bpp cases. Chen et al. [13]
inserted a set of scaling factors directly before the quantizer to
achieve the discrete variable compression rate. Mei et al. [38]
proposed an end-to-end optimized quality and spatial scalable
image compression model (QSSIC) to achieve variable rates.

Recently, research has been conducted on continuous com-
pression rate adjustable [1], [14], [15], [16]. The work [15]
introduced a series of vector pairs for coarse compression rate
control and then achieved continuous compression rate control
by exponential interpolation. Lin et al. [16] used the scaling
network, which is designed to map the scalar value of the
Lagrange multiplier into a vector, to scale the feature map
channel-wise achieving the variable compression rate. Sun et
al. [14] extended the work [11], which obtained a continuously
adjustable compression rate by linear interpolation. Song et
al. [1] conditioned the quality map by spatial feature transform
(SFT) [60] to control different compression rates.

VAE-based variable-rate approaches have been extensively
researched. However, those methods suffer from severe informa-
tion distortion after multiple continuous operations of compres-
sion/decompression for the same image. The distortion becomes
more explicit as the number of operations increases.

C. Invertible Neural Networks

Invertible neural networks (INNs) are generative models that
transform complex distributions into simple ones, allowing for
accurate and efficient probability density estimation. INNs have
a bijective mapping of input and output, which is ideal for image
compression.

NICE [24] introduced a flexible architecture that can learn
highly nonlinear bijective transformations to represent data with
simple distributions. Based on NICE [24], RealNVP [26] further
extended the idea of hierarchical and combinatorial transforma-
tions, which used affine coupling and a multi-scale framework.
Kingma et al. [25] proposed a generative flow model based
on a 1× 1 invertible convolutional network with a significant
improvement in log-likelihood on a standard benchmark dataset,
having the advantages of exact controllability of log-likelihood,
the tractability of exact inference of latent representations, and
parallelizability of training and synthesis. It shows that a gener-
ative model optimized for the simple log-likelihood objective
is capable of efficiently synthesizing and manipulating large
images in a realistic way. Ardizzone et al. [61] demonstrated that
the validity of INNs is suitable not only for synthetic data but
also for two practical applications in medicine and astrophysics.
Sorrenson et al. [23] generalized the theory to the case of an un-
known intrinsic problem dimension, proving that in some special
(but not very restrictive) cases, informative latent variables are

automatically separated from noise by an estimator. SRFlow [62]
has designed a conditional normalizing flow architecture to
solve the ill-posed problem in the super-resolution task. Xiao
et al. [63] proposed an invertible rescaling network (IRN), which
constructed a bijective transform to effectively implement the
reconstruction of low-resolution into high-resolution images.

INN greatly alleviates the information loss problem for better
image compression, as in [17], [18], [44], [45], [64]. But no one
has specifically studied variable-rate image compression with a
single model based on the INN framework.

III. METHODOLOGY

A. Framework

Our image compression approach I2C is depicted in Fig. 2.
The proposed method implements fine variable-rate modulation
in an invertible neural network framework, which involves the
invertible activation transformation (IAT) module to control
different compression rates through different quality levels. We
present the detailed procedure of the model in the following:
First, the source image x ∈ R3×H×W is enhanced by the dense
block module [65] to generate a nonlinear representation of
u ∈ R3×H×W , where H and W denote the height and width
of the input image respectively. Then the forward pass of the
Invertible Neural Network section, which is equipped with the
proposed IAT module, transforms u to a latent representation,
conditioned on the quality level L ∈ RH×W to control the
compression rate. This latent representation would be further
fed into the Attention Channel Squeeze module to reduce the
number of channels and obtain the potential representation y.
This procedure could be formulated by a parametric analysis
transform function, i.e.:

y = ga(x, L), (1)

the discrete latent features ŷ are obtained by quantification of
y, i.e., ŷ = Q(y). We use the quantizer Q(·) in Ballé et al. [10]
to model the quantized latent representation ŷ approximately by
adding the uniform noise U(−0.5, 0.5) to the latent representa-
tion y during training and rounding the latent representation y
during testing. The context entropy model generates parameters
μ and σ of the Gaussian entropy model that approximates
the distribution of quantified latent representation ŷ to support
the entropy encoding. We use range asymmetric numeral sys-
tem [66] to losslessly compress latent representation ŷ and ẑ into
bitstreams.

The inverse calculation takes the quantified latent represen-
tation ŷ and the quality level L as the input, and reconstructs
the decompressed images by a parametric synthesis transform,
which is formulated as follows:

x̂ = gs(ŷ, L). (2)

B. Invertible Activation Transformation

We proposed the invertible activation transformation (IAT)
module to enhance the invertible neural network, which effi-
ciently generates the desired compressed representation condi-
tional on the quality level L. The proposed IAT module can
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Fig. 2. Framework of I2C. We insert IAT into the Invertible Neural Network section and utilize it to generate element-wise activation parameters of features
from the input quality level (QLevel). IAT and QLevel together give I2C the ability of fine variable-rate control while preserving the image fidelity especially when
multiple continuous compression/decompression operations are executed. EC/ED means entropy encoding/decoding respectively. Q is the quantizer. Parameters
(μ, σ) of the context entropy model are used to support EC/ED.

Fig. 3. Illustration of the IAT module. The forward and inverse transformation
of the IAT module implements the bijective mapping. This module takes the
QLevel and feature as input to generate element-wise activation parametersβ and
γ, further obtaining the output results. Thus, the forward and inverse procedures
are mathematically invertible, enhancing the fidelity of reconstructed images.

achieve variable-rate adaption on a single model while preserv-
ing the image fidelity, especially after multiple continuous com-
pression/decompression operations, in a mathematical invertible
manner.

The forward transform of the IAT module is illustrated by
pink arrows on the top of Fig. 3. The inputs are the quality level
L and the feature s. The element-wise activation parameters
γ ∈ Rc×h×w and β ∈ Rc×h×w are then calculated by the IAT
module from the quality level L via convolutional operations.
These activation parameters would be applied to the feature s
via the (3) to generate the feature e:

e = (s� β)⊕ γ, (3)

where � denotes the Hadamard product and ⊕ denotes the
addition by element. c, h, and w are the channel, height, and
width of the feature, respectively.

The inverse transform of the IAT module is illustrated by
green arrows at the bottom of Fig. 3. The input quality level L
and features ê are applied to obtain the feature ŝ. This inverse
transform is formulated by (4):

ŝ = (ê� γ)� β, (4)

where � denotes the subtraction in elemental order, � denotes
the division by elemental order. Once the quality level L is the
same in both forward and inverse procedures, the invertibility of
the operation between the features s and e can be guaranteed.

In the previous work [13], a set of scaling factors was inserted
directly before the quantizer to achieve the discrete adjustable
compression rate. In our algorithm, the activation parameters are
element-wise, which means that the IAT module is computed as a
spatial feature transform rather than a simple channel weighting.
Moreover, the IAT module is attached after each invertible
block which is initially proposed in RealNVP [26] and adopted
by baseline model [18], not just inserted before the quantizer.
These adjustments not only make fine variable-rate adaptation
available but also turn out to better performance, the experiment
”Impact of the QLevel Representation” in Section VI-B shows
its effectiveness, and the results are shown in Fig. 15.

C. Fine Variable-Rate Control

Unlike interpolation-based methods [14], [15] for obtaining
finer compression rates, our method achieves the fine compres-
sion rate adaptation directly by modulating the quality level L,
which is more convenient when controlling the compression
rate by only one parameter instead of two. Compared to Song
et al. [1], our method does not require additional semantic labels,
either.

The goal of lossy image compression is to minimize the length
of the bits stream and the distortion between the source image
x and the reconstructed image x̂. The optimization function is
always expressed in the rate-distortion:

L = R+ λD, (5)
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where λ is the Lagrange multiplier which determines the trade-
off between the rate R and the distortion D. Theoretically, as
long as the set of Lagrangian multiplier λ is large enough, it is
possible to achieve fine compression rate control, but in prac-
tice, the computational cost is too high. For interpolation-based
methods, the Lagrangian multiplier λ is a scalar. Thus, at each
iteration during training, only one element in a finite set of λ

would be randomly selected for optimization. In order to further
promote the R-D performance of our model, we use a tensor
instead of the scalar λ. Our optimization function implements
fine variable-rate control by minimizing the rate-distortion:

Loss = R+ Λ�D, (6)

where dimensions of Λ ∈ RC×H×W and the distortion D ∈
RC×H×W are the same as the dimension of the original input
image. � denotes the Hadamard product. In this formulation,
Λ is a tensor and no longer a finite set of constant scalars.
Thus, D measures pixel-wise distortion and is defined as D =
∑T

i=1 λi(xi−x̂i)
2

T , T indicates the number of image pixels, λi is
the Lagrangian multiplier, xi and x̂i denote one pixel of the
original image x and reconstructed image x̂, respectively.
Λ is simply calculated from the quality level L via a mono-

tonically increasing function: Λ = V (L), where V : RN →
RT . V (L) = θ × eτ×L, θ = 0.0012, τ = 4.382, the process
of dimensioning from RN → RT is done by direct replica-
tion between channels. L = [li]i=1:N , li ∈ [0, 1], N = H ×W ,
T = C ×H ×W . C, H , and W denote the channel, height,
and width of the source image x, respectively. Under such a
paradigm, we implement this pixel-wise distortion constraint
by randomly generating values of each element of the tensor
Λ via the quality level L during training. This is equivalent to
increasing the number of λ values selected at each iteration. So,
the fine variable-rate control can be obtained by feeding exact
quality levels during the testing.

As in other learning-based method [10], the log-likelihood
of the coded features ŷ is estimated by a probabilistic model to
replace the true compression rate R. Finally, the training loss
would be:

Loss = − log2Pŷ(ŷ|x,Λ)− log2Pẑ(ẑ|x,Λ)

+

∑T
i=1 λi(xi − x̂i)

2

T
, (7)

where ŷ and ẑ are quantized latent representations and side
information respectively. pŷ(ŷ|x,Λ) = N (μ, σ2), μ and σ de-
note the estimates of the mean and standard deviation of the
quantified latent representation ŷ. pẑ(ẑ|x,Λ) = N (μ1, σ

2
1), μ1

and σ1 denote the estimates of the mean and standard deviation
of the quantified side information ẑ. The side information usually
represents the hyperprior originally proposed in [10] and refers
to the extra stream ẑ generated by the ”Context Entropy Model”
in Fig. 2. It is worth noting that this loss function would be
degraded to the standard rate-distortion optimization function if
all elements of the tensor quality level L are the same.

In addition, our method can be trained on arbitrary unlabeled
data instead of requiring semantic segmentation labels corre-
sponding to the original data, which is different from Song et
al. [1], for training the model.

IV. THEORETICAL ANALYSES AND DERIVATIONS

Thanks to the invertible design, I2C can better preserve image
fidelity, especially after multiple continuous re-encodings with
different compression rates. Here, we present the mathematical
derivation of such a design and show why fidelity preservation
works.

A. Conditional Invertible Neural Network for Lossy Image
Compression

In this subsection, we would like to present the rationality of
I2C, which can be considered a kind of conditional invertible
neural network, for variable-rate image compression. Lossy im-
age compression usually can be divided into three modularized
components: transform, quantization, and entropy coding. The
goal of lossy image compression is to transform the original
image x to symbols ŷ to be entropy coded. Typical learned
single-rate image compression approaches learn a deterministic
mapping x �→ ŷ when given the trade-off λ in (5). We aim
to get the conditional distribution Pŷ|x(ŷ|x, λ), and different
mappings from x to ŷ are achieved by different λ. Finally,
different compression rates can be obtained by different λ.

The key idea of the invertible neural network (INN) [24], [26]
is to parameterize the distribution pv|u by the INN fφ. When
introducing conditional settings, fφ makes the deterministic
mapping to the variable latent representation v = fφ(u, λ). If the
function fφ is invertible, the original feature u can be obtained
from the latent representation v as u = f−1

φ (v, λ). The core
aspect of the invertible neural network is that the probability
density pv|u can be explicitly computed as:

pv|u(v|u, λ, φ) = pu|v(f−1
φ (v, λ))

∣∣∣∣∣det
∂f−1

φ (v, λ)

∂v

∣∣∣∣∣

−1

. (8)

It is derived by applying the change-of-variables formula for
densities, where the second factor is the resulting volume scaling

given by the determinant of the Jacobian
∂f−1

φ (v,λ)

∂v . The (8) al-
lows us to train the network by optimizingL through minimizing
the negative log-likelihood for training the invertible function
fφ:

L(φ;u, v, λ) = −log pv|u(v|u, λ, φ)

= −log pu|v(f−1
φ (v, λ))− log

∣∣∣∣∣det
∂f−1

φ (v, λ)

∂v

∣∣∣∣∣

−1

.

(9)

In this formulation, for preventing the collapse of the latent
space, the Jacobian log-determinant is adopted inspired by [45].
In our implementation, we can use the reconstruction item
d(u, û) instead of it. In the Fig. 2, when we consider combining
dense block and attention channel squeeze, d(x, x̂) is involved
in the distortion item. Meanwhile, the side information ẑ of the
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entropy model should be considered. That is, the total loss could
be formulated as:

Loss = −log pŷ(ŷ|x, λ)− log pẑ(ẑ|x, λ) + λd(x, x̂). (10)

B. Conditional Affine Coupling Layers

In this subsection, we present why the IAT module can
be integrated with affine coupling layers [24], [26], to jointly
construct the I2C and implement the invertible design. The
invertible neural network fφ can be decomposed into a sequence
of invertible layers. In fact, combinations of the IAT module and
the affine coupling layer, which is contained in the invertible
block in Fig. 2, can compose a sequence of conditional affine
coupling layers. The ith conditional affine coupling layer takes
an input u(i)

1:C with dimensional size of C. It splits the inputs at

cth channel into two parts and gets the output u(i+1)
1:C with the

channel dimension of C under the condition λ:

Θ
(i+1)
1:c = u

(i)
1:c � exp(σc(g2(u

(i)
c+1:C))) + h2(u

(i)
c+1:C), (11)

u
(i+1)
1:c = Θ

(i)
1:c � β

(i+1)
1:c + γ

(i+1)
1:c , (12)

Ψ
(i+1)
c+1:C = u

(i)
c+1:C � exp(σc(g1(u

(i+1)
1:c ))) + h1(u

(i+1)
1:c ), (13)

u
(i+1)
c+1:C = Ψ

(i+1)
c+1:C � β

(i+1)
c+1:C + γ

(i+1)
c+1:C , (14)

where � denotes the Hadamard product, exp(·) denotes the
exponential function, and σc(·) denotes the sigmoid function.
The β(i) and γ(i) are calculated by the condition λ (details
are mentioned in Section III-B). g1, g2, h1, and h2 can be
any feedforward functions and need not be invertible. During
the inverse processing, the ith conditional affine coupling layer
inversely takes u

(i+1)
1:C as input and split it at cth channel. The

conditional affine coupling layer gives a perfect inverse:

Ψ
(i)
c+1:C = (ui+1

c+1:C − h1(u
(i+1)
1:c ))� exp(−σc(g1(u

(i+1)
1:c ))),

(15)

u
(i)
c+1:C = (Ψ

(i)
c+1:C − γ

(i)
c+1:C)� β

(i)
c+1:C , (16)

Θ
(i)
1:c = (u

(i+1)
1:c − h2(u

(i)
c+1:C))� exp(−σc(g2(u

(i)
c+1:C)))),

(17)

u
(i)
1:c = (Θ

(i)
1:c − γ

(i)
1:c)� β

(i)
1:c, (18)

where � denotes the division by elemental order. Through the
above equations, the invertibility is inherently guaranteed by
the mathematical design. When the features are calculated in
these conditional affine coupling layers, the information will
not be lost, and the fidelity of the information will be elegantly
preserved.

V. EXPERIMENTS

A. Implementation Details

Details For Training: In our implementation, the network
of Xie et al. [18] is adopted as our basic architecture. The
training datasets contain Flicker 2W [67] and COCO [68]. Our
network is trained on 256× 256 randomly cropped patches

and discards images less than 256px in height or width dur-
ing data pre-processing. All experiments are conducted in
the RGB space. In training, the quality level L needs to be
sent to the INN section as a condition during the forward
and inverse transform. The quality level L takes a uniform
value tensor between (0,1) during the testing and is randomly
sampled between (0,1) during the training. Our implemen-
tation relies on Pytorch [69] and an open-source Compres-
sAI PyTorch library [70]. All experiments were conducted on
RTX 3090 GPU and trained for about 2.5 M iterations with
batch size 8. Adam optimizer [71] is used to optimize the
parameters, there were multistage learning rates {1e− 4, 5e−
5, 1e− 5, 5e− 6, 1e− 6, 5e− 7} that changed with boundaries
{1000000, 1300000, 1600000, 1900000, 2200000, 2500000}.

Details For Testing: We evaluate the rate-distortion per-
formance on three commonly used datasets. The Kodak [19]
contains 24 lossless images with a size of 768× 512. The CLIC
Professional Validation dataset [20] comprises 41 high-quality
images with much higher resolution. The DIV2K validation
dataset [21] contains 100 images with high resolutions of 2 K.
We draw curves based on the rate-distortion performance to
compare the coding efficiency of different methods. We also
calculate the area under the rate-distortion curve to observe the
performance difference more effectively.

B. Fidelity for Re-Encoding

In order to verify the ability of high fidelity preserving of I2C,
our method is compared with the latest VAE-based variable-rate
method proposed by Song et al. [1] according to their official
codes. Since their method does not use a context model, we
remove the context model and add the non-local attention mod-
ule [36] in the hyperprior layer for our approach to make a fair
comparison.

Fig. 4(a) and (c) show the performance after multiple contin-
uous operations of compression/decompression with different
compression rates. Both approaches change from high to low
bpp ranges. Our I2C adopts bpp in the set of {1.027, 1.027, 1.012,
1.012, 0.995, 0.995, 0.978, 0.978, 0.962, 0.962, 0.946, 0.946,
0.929, 0.929, 0.913, 0.913, 0.897, 0.897, 0.881, 0.881, 0.866,
0.866, 0.851, 0.851, 0.836, 0.836, 0.821, 0.821, 0.806, 0.806,
0.791, 0.791} and Song et al. [1] adopts bpp in the set of {1.039,
1.039, 1.025, 1.025, 1.009, 1.009, 0.993, 0.993, 0.977, 0.977,
0.961, 0.961, 0.945, 0.945, 0.929, 0.929, 0.913, 0.913, 0.897,
0.897, 0.881, 0.881, 0.866, 0.866, 0.851, 0.851, 0.835, 0.835,
0.820, 0.820, 0.805, 0.805}. It is clearly seen that our method
outperforms Song et al. [1] by a large margin, after multiple
continuous variable-rate re-encodings. Fig. 4(b) and (d) show the
performance by multiple operations with the fixed compression
rate. Both approaches achieve a bit rate of 0.791 bpp for all
steps. Also, our method achieves better results significantly,
compared with Song et al. [1] and baseline [18]. In Fig. 4 (b) and
(d), our model outperforms the fixed-rate baseline [18] and the
variable-rate Song et al. [1] by a large margin on both PSNR and
MS-SSIM. The results indicate that our proposed IAT module
is powerful to maintain image fidelity, which is important for
practical applications.
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Fig. 4. Successive re-encodings on the Kodak dataset. (a) and (c): Compres-
sion rates of each compression/decompression operation are different. (b) and
(d): The compression rate is fixed. Our approach outperforms baseline [18] and
Song et al. [1] (a SOTA variable-rate approach) by a large margin to show the
superiority of fidelity preserving especially when multiple continuous operations
are executed.

Fig. 5(a) and (b) show the performance between our I2C
and Ballé et al. [10] after multiple operations of compres-
sion/decompression with different compression rates. Both ap-
proaches change from high to low bpp ranges with the bpp
set of {0.939, 0.669, 0.478, 0.320, 0.209, 0.131}. Fig. 5(c)
and (d) show the performance between our I2C and Minnen
et al. [29] with the bpp set of {0.885, 0.639, 0.432, 0.288, 0.187,
0.111}. Fig. 5(e) and (f) show the performance between our
I2C and Chen et al. [36] with the bpp set of {0.859, 0.623,
0.419, 0.274, 0.177}. Fig. 5(g) and (h) show the performance
between our I2C and Hu et al. [32] after multiple re-encodings
with different compression rates. Both approaches change from
high to low bpp ranges with a bpp set of {0.796, 0.411, 0.309,
0.208}. Fig. 6(a) and (b) show the performance comparison
between our proposed I2C and Qian et al. [54] with bpp set
of {0.931, 0.593, 0.406, 0.263, 0.145}. Fig. 6(c) and (d) show
the performance comparison between our proposed I2C and Lu
et al. [56] with bpp set of {0.864, 0.614, 0.431, 0.286, 0.185,
0.112}. It is clearly seen that our proposed I2C consistently
outperforms those learning-based (including VAE and Trans-
former) methods by a large margin, after multiple continuous
variable-rate re-encodings. We also conduct extra apple-to-apple
experiments on the CLIC dataset. The experimental results are
shown in Table I. The results also indicate that our proposed
IAT module is powerful to maintain image fidelity, which is
important for practical applications.

Fig. 7 illustrates the results of multiple continuous re-
encodings on the same image with different compression rates.

Fig. 5. Multiple continuous re-encodings on the Kodak dataset [19]. The
compression rates of each compression/decompression operation are changed.
Our approach compares with several typical single-rate image compression
methods including (a) and (b) Ballé et al. [10], (c) and (d) Minnen et al. [29],
(e) and (f) Chen et al. [36], (g) and (h) Hu et al. [32] on metrics of PSNR and
MS-SSIM respectively. Our approach outperforms them by a large margin to
show the superiority of fidelity preserving especially when multiple variable-rate
re-encodings are executed. Besides, it is worth noting that those single-rate
models need different models to adapt to various compression rates while our
I2C is a variable-rate method.

With operations increasing, our proposed method shows higher
fidelity while the VAE-based method [1] gradually raises severe
artifacts and color shifts. Fig. 8 is the visualization results show-
ing those single-rate image compression methods compared
with our I2C during the variable-rate re-encodings on same
images. All images of the single-rate methods are the results
of the corresponding last iteration in Fig. 5. It is noted that the
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Fig. 6. Multiple continuous re-encodings experiments comparing with recent
Transformer-based single-rate image compression methods on the Kodak [19]
dataset. (a) and (b) Qian et al. [54], (c) and (d) Lu et al. [56] on metrics of
PSNR and MS-SSIM respectively. Our I2C also consistently outperforms the
Transformer-based methods further showing its robustness and advantages.

TABLE I
FIXED-RATE RE-ENCODING EVALUATION ON CLIC DATASET. THE AUC IS THE

AREA UNDER THE “ITERATIONS”-“PNSR”/“MS-SSIM” CURVES. 32
RE-ENCODINGS WITH A FIXED RATE (BPP=0.318) ARE ADOPTED. THE

SUPERIOR RESULTS ON FIXED RATES SHOW THAT THE PROPOSED IAT
MODULE SURPRISINGLY ENHANCES THE FIDELITY MAINTENANCE ABILITY OF

THE BASELINE [18]

single-rate methods (Ballé et al. [10], Minnen et al. [29], Chen et
al. [36], and Hu et al. [32]) adopt different parameter models for
the different compression rates. For each comparison, we adjust
the bpp of our I2C to adapt those methods.

We further construct re-encoding experiments with more (ex-
panding from 31 to 91) iteration operations. The visualization
results (up to 91 re-encodings with different compression rates)
are shown in Fig. 9. Fig. 10(a) and (b) show the performance after
multiple continuous operations of compression/decompression
with different compression rates on the Kodak [19] dataset. The
experimental results further indicate that our proposed I2C is
more powerful in maintaining image fidelity with increasing
re-encoding operations (I2C maintains great image fidelity even
91 iterations are executed).

Besides, we conduct experiments on biomedical and remote
sensing images to show the superiority of I2C for practical
images of different domains. Fig. 11 shows the qualitative
results after different numbers of compression/decompression

operations under various rates compared with the state-of-the-
art VAE-based approach [1]. Fig. 12 is the visualization re-
sults showing those single-rate image compression methods
compared with our I2C during the variable-rate re-encodings.
Consistently, I2C outperforms those methods by a large margin
and preserves the image fidelity much better, especially after
multiple continuous re-encodings.

The results indicate that our proposed I2C is powerful to pre-
serve image fidelity, which is important for practical applications
such as media online sharing and cooperative media processing.

C. Rate-Distortion Performance

To verify the general validity of the proposed approach,
we conduct rate-distortion (RD) performance experiments on
three datasets, i.e., Kodak [19], CLIC [20], and DIV2K [21].
We compare our approach with seven recent state-of-the-art
learning-based image compression methods [1], [18], [32], [33],
[54], [56], [72], [73], [74] and three classical codec methods,
BPG [5], AVIF [6], and VVC [7]. The results of learning-based
methods are collected from their official GitHub pages or their
papers. The VCC approach is implemented by the official Test
Model VTM 12.1 with the intra-profile configuration from
the official GitHub page. Both VVC and BPG software were
configured with the YUV444 format to maximize compression
performance. AVIF [6] approach is implemented by the official
GitHub page. We configure the AVIF software with PNG format
for input to maximize compression performance.

All comparable results are demonstrated in Fig. 13. It is seen
that our approach achieves the best results with commonly used
metrics PSNR and MS-SSIM on three datasets. Compared with
the baseline method [18], our approach achieves comparable
R-D performance on the Kodak dataset [19] (Fig. 13(a), (d))
and outperforms the baseline on both the CLIC dataset [20]
(Fig. 13(b), (e)) and the DIV2K dataset [21] (Fig. 13(c), (f)). This
means that our approach achieves the variable-rate adaptation
based on the single-rate method [18] without sacrificing any
performance, verifying the effectiveness of the I2C. It is worth
noting that the CLIC dataset and DIV2K dataset are high-
resolution images, implying that our method is more effective
on high-resolution images. Our approach empowers the network
model with variable rate in addition to improving the algorithmic
performance of the original model. In Fig. 13(a), (d), the test
dataset is Kodak, which contains images with a resolution of 768
× 512, and it is smaller compared to CLIC and DIV2K. As image
resolution decreases, feature maps fed into the IAT module
become smaller and more susceptible to quantization. That is,
from experimental results, our method is especially effective on
high-resolution images. In Fig.13(b), the advantages obtained
by our method can be seen. The overlapping part of the curve
shows that performances of fixed compression rate methods are
similar to ours at specific compression rates. In summary, for
a fixed rate compression, once a low-resolution image is fed,
the performance of our method is competitive compared to the
baseline. In contrast, once a high-resolution image is fed, our
proposed method can even outperform the baseline. Besides,
our method still can outperform other methods no matter the
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Fig. 7. Qualitative results after different numbers of compression/decompression operations under various rates. The two images (kodim1.png and alexander-
shustov-73.png) are from the Kodak dataset and the CLIC dataset, respectively. Severe artifacts and color shifts would appear in the state-of-the-art VAE-based
approach [1] once multiple continuous operations are executed, in contrast to better fidelity preserving of our approach. N indicates the number of compres-
sion/decompression operations. Best viewed in color.

Fig. 8. Visualization of sample images in Kodak dataset. Compared with
single-rate methods (Ballé et al. [10], Minnen et al. [29], Chen et al. [36], and Hu
et al. [32]) which need multiple models to achieve different compression rates.
For each comparison, we adjust the bpp of our I2C to adapt those methods.
Our I2C has much better fidelity-preserving performance and is a variable-rate
method.

resolution of the input image. To further compare the perfor-
mance between the baseline [18] and our method, we calculate
their corresponding area under curve (AUC) values, as shown
in Table II. The results show that our approach outperforms
the single-rate model method by Xie et al. [18] in terms of the
aggregated AUC metric.

In addition, Our I2C could achieve variable-rate image com-
pression with fine granularity. To verify the effectiveness of
fine variable-rate control, we illustrate multiple performances
of fine variable-rate control within the low and high bpp range

TABLE II
AREA UNDER CURVE (AUC) OF OUR METHOD AND

XIE ET AL. [18] (BASELINE) ON DIFFERENT DATASETS ABOUT PSNR AND

MS-SSIM. THE BPP RANGE IS DETERMINED BY THE INTERSECTION OF TWO

METHODS. OUR APPROACH MAKES A SINGLE-RATE BASELINE COMPRESSION

MODEL ACHIEVE THE VARIABLE-RATE ABILITY AND EVEN OUTPERFORMS

THE BASELINE IN R-D PERFORMANCE

TABLE III
VARIABLE-RATE CONTROL EXPERIMENTS OVER THE KODAK DATASET. OUR

APPROACH CAN FINELY CONTROL THE COMPRESSION RATE WITHIN THE

WHOLE BPP RANGE (NO MATTER LOW OR HIGH)

in Table III. In practice, classical image codecs provide hundreds
of variable-rate RD points to meet the basic requirements of the
application. Compared with that, our method obtains at least
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Fig. 9. Qualitative results after different numbers of re-encoding operations (expanding from 31 to 91) under various rates. Severe artifacts and color shifts would
appear in the Song et al. [1] once multiple continuous operations are executed.

Fig. 10. Up to 91 successive re-encodings on the Kodak [19] dataset. The
compression rates of each re-encoding operation are different. I2C outperforms
Song et al. [1] by a large margin to show the superiority of fidelity preserving
especially when multiple continuous operations are executed.

1000 effective variable-rate RD points with a very fine PSNR
and MS-SSIM.

D. Reduction in the Volume of Model Parameters

To further improve the efficiency of our model, we try to
additionally reduce its parameters without performance com-
promise. Compared to the original version shown in Fig. 2,
the number of channels of feature maps, which are before and
after channel averaging operations, is reduced from 768 to 192.
Therefore, we then consider inserting the IAT module after the
channel averaging operation instead of before it to make the
entire model more lightweight. Also, due to the ability of latent
representation modeling of I2C, we further remove the attention
module of the I2C RealNVP-based version to reduce the number
of parameters. The experiments show that such a simplification
has no significant impact on the performance of the algorithm.
Fig. 14 shows the network framework of the lightweight version.
We present the computational costs and model size of Ours
and Ourslight in Table IV, the number of parameters has been
reduced by nearly one-third, and the reduction of the number
of parameters has taken a step toward the practicability of the

Fig. 11. Qualitative results after different numbers of compres-
sion/decompression operations under various rates on practical biomedical
and remote sensing images. A similar conclusion of Fig. 7 can be achieved
that severe artifacts and color shifts would appear in the state-of-the-art
VAE-based approach [1] once multiple continuous operations are executed, in
contrast to better fidelity preserving of our approach. N indicates the number of
compression/decompression operations. Best viewed in color.

algorithm deployment. We tested the algorithm performance on
three datasets: Kodak [19], CLIC Professional Validation [20]
and DIV2K validation [21]. Since the RD-performance curves
are close, we calculated the AUC (the higher the value, the better
the performance) to be able to see more intuitively the algorithm
performance comparison before and after the parametric number
change. The results of the experiment are shown in Table V, the
number of parameters is reduced by nearly one-third, but the
performance of the algorithm is not degraded, which shows that
this simplification is effective.
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Fig. 12. Visualization of samples on practical biomedical and remote sensing
images. Compared with single-rate methods (Ballé et al. [10], Minnen et al. [29],
Chen et al. [36], and Hu et al. [32]) which need multiple models to achieve
different compression rates. Same as the settings of Fig. 8, for each comparison,
we adjust the bpp of our I2C to adapt those methods. Consistently, our I2C has
also much better RD performance on practical images of different domains.

TABLE IV
COMPARE THE PARAMETER AND COMPUTATIONAL COST AMONG OURS, OUR

LIGHTWEIGHT VERSION, BASELINE [18], AND ANOTHER TWO TYPICAL

LEARNING-BASED APPROACHES ([54], [56]). THE GFLOPS AND RUNNING

MEMORY ARE OBTAINED BY INPUTTING THE 512*768 RGB IMAGE. N
DENOTES THE NUMBER OF DIFFERENT COMPRESSION RATE MODELS. IT IS

WORTH NOTING THAT OUR PROPOSED I2C HAS MORE THAN 1000 VARIABLE

COMPRESSION RATES, I.E., N > 1000, IN ADDITION TO MAINTAINING HIGH

FIDELITY CONTINUOUS CODEC

TABLE V
AREA UNDER CURVE (AUC) OF OURS AND OUR LIGHTWEIGHT VERSION ON

THREE DIFFERENT DATASETS OF PSNR AND MS-SSIM. THE BPP RANGE IS

DETERMINED BY THE INTERSECTION OF TWO METHODS. THE LIGHTWEIGHT

VERSION KEEPS A COMPETITIVE R-D PERFORMANCE COMPARED TO THE

ORIGINAL ONE

E. The Complexity of I2C

In this subsection, we present the complexity of our proposed
I2C about the size of parameters, GFLOPs, running memory, and
train costs. The statistics of GFLOPs and running memory are
performed during the inference procedure, and the ANS entropy
coding [66] (adopted by all methods in the same way, running
on CPU) is not included to facilitate the statistics. The proposed
I2C outperforms the baseline [18] not only in rate-distortion
performance but also in efficiency. Since the proposed model
could obtain variable-rate image compression within a single
model, we can reduce a large amount of additional training and
storing once different compression rates are required in a task.
The baseline [18] and another two typical learning-based meth-
ods ([54], [56]) take about 10/7/4 days to train a fixed-rate model

on one single Nvidia RTX 3090 GPU respectively. However,
once N different compression rates are required, the training
time and storing cost would heavily increase to N times. With
the same computational environment, our proposed I2C only
requires 18 days (or 16 days for the lightweight version) to train
and could achieve more than 1000 different compression rates,
as shown in Table IV.

F. I2C With Different INN-Based Architectures

We use three different coupling layers from Incompressible-
flow Network (GIN) [23], NICE [24], and GLOW [25] instead of
the affine coupling layer, initially proposed in RealNVP [26] and
adopted by the invertible block of baseline model [18] in Fig. 2,
to verify that I2C can adapt to different INN-based architectures.
We conduct RD performance experiments on three datasets, i.e.,
Kodak [19], CLIC [20], and DIV2K [21]. In order to compare
the performance with OurNICE, OurGIN, and OursGLOW methods,
we calculate their corresponding area under curve (AUC) values,
as shown in Table VI. Since the GIN [23] preserves volumes of
the INN and the Jacobian determinant is simply unity, the result
is better lightly than our I2C RealNVP-based version. It can
be seen from the experimental results that I2C can be readily
applied to different INN-based architectures.

VI. DISCUSSION

A. Codec Processing of Variable-Rate Control

It is worth noting that there are three crucial differences
in achieving the fine variable-rate control between Song
et al. [1] and ours. First, the input of controlling is different. The
tensor-based Lagrange multiplier is computed by the quality
level, which is different from the quality map input of Song
et al. [1]. The quality map of Song et al. [1] represents the
semantic segmentation map for task-aware image compression,
and our quality level represents the compression level. Second,
the additional information is different. The training process is
different because our quality level is different from the quality
map of Song et al. [1], which requires semantic segmentation
labels, and we do not need semantic segmentation labels, en-
abling more flexible image compression. Our method is able to
train on arbitrary images without semantic segmentation labels,
as we mention in Section III-C. Finally, The codec processing of
variable-rate controlling is different. Song et al. [1] used different
quality maps in the encoding and decoding process, i.e., the
quality map in the decoding process is generated by the latent
representation through neural networks, which is not equal to
the input quality map in the encoding process. Differently, we
control the variable-rate image compression by storing the qual-
ity level in the bitstream directly. The usage of the same quality
level of both encoding and decoding procedures would bring out
a more stable and finer controlling result. To validate this idea,
we conduct fine variable-rate control comparison experiments
with 10000 points. We implemented Song et al. [1] according
to their official GitHub code. It can be seen in Table VII that
with the bpp increases, Song et al. [1] show occasional decay
in PSNR and MS-SSIM, while ours are consistently increasing.
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Fig. 13. RD performance curves aggregated over the Kodak [19], CLIC professional validation dataset [20], and DIV2K validation dataset [21]. MS-SSIM values
converted to decibels (−10log10(1−MS-SSIM)). (a)–(c) and (d)–(f) are results on Kodak, CLIC, and DIV2K about PSNR and MS-SSIM, respectively. It is
worth noting that CLIC and DIV2K are datasets with high-resolution images. That is, our method is especially effective on high-resolution images.

Fig. 14. Lightweight version of network architecture equipped with the proposed Invertible Activation Transformation (IAT) module. The last IAT module inserts
after the channel squeeze operation to reduce the volume of the model parameters. EC/ED means entropy encoding/decoding respectively. Q is the quantizer.

TABLE VI
AREA UNDER CURVE (AUC) OF OURS, OURSGIN, OURSNICE AND OURSGLOW ON DIFFERENT DATASETS OF PSNR AND MS-SSIM. THE BPP RANGE IS

DETERMINED BY THE INTERSECTION OF FOUR METHODS. IT CAN BE SEEN FROM THE EXPERIMENTAL RESULTS THAT I2C CAN BE READILY APPLIED TO

DIFFERENT INN-BASED ARCHITECTURES
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TABLE VII
COMPARISON WITH SONG ET AL. [1] ON BPP FINE VARIABLE-RATE CONTROLLING. IDEALLY, AS BPP INCREASES, PSNR AND MS-SSIM SHOULD ALSO INCREASE

ACCORDINGLY. HOWEVER, PSNR AND MS-SSIM OF SONG ET AL. [1] DO NOT KEEP CONSISTENTLY INCREASING WHILE OCCASIONAL DECAYS OCCUR,
INDICATING THAT OUR PROPOSED I2C ACHIEVES FINER AND MORE STABLE VARIABLE-RATE CONTROLLING DUE TO DIFFERENT INPUTS AND STRATEGIES

Fig. 15. (a) and (b) represent the impact of the QLevel representation. The scale factor method (green line) is similar to Chen et al. [13]. The scale network
method (purple line) is similar to Lin et al. [16]. Our proposed tensor-based QLevel representation achieves better performance than simply using a scalar or scale
network to control the compression rate. (c) represents the impact of gain components. W/O represents “without”, W represents “with”, CM represents “context
model”, and NLAM represents “non-local attention module”.

The result indicates that our fine variable-rate control is different
from Song et al. [1], and shows better and more stable results
on fine variable-rate control. In addition, the quality level is a
uniform tensor generated from a single value during the testing.
The number of stored bits in the bitstream depends on the
granularity of desirable variable-rate control. Theoretically, if 8
bits are used, 28 = 256 effective variable rates are achieved. If 16
bits are used, 216 = 65536 effective variable rates are achieved.
This small amount of additional bitstream storage can generate
a large number of fine variable rates, which is quite practical in
real-world applications.

B. Impact of the QLevel Representation

To further analyze the effectiveness of the tensor-based
QLevel representation of our proposed I2C, we conducted an
ablation study by modifying the quality level representation. We
compared the proposed approach with the baseline method [18]
and the simplified version of our method, which modifies the
quality level from tensor to scalar, similar to [13]. We also
conduct the comparison experiment with the method of Lin
et al. [16], which used the scaling network (Scale network)
to map the scalar value of the Lagrange multiplier into a
vector channel-wisely scale feature map achieving the vari-
able compression rate. It is worth noting that the method

of Lin et al. [16] does not satisfy mathematical invertibil-
ity and cannot be used directly, so we modified it to be ap-
plicable to the invertible neural network-based architecture.
Comparative results are shown in Fig. 15(a) and (b). The
results indicate that the proposed tensor-based quality level
can obtain better performance, compared with the scalar fac-
tor one, which only provides channel-wise weighted com-
putations on latent representation. I2C achieves the same
great advantage compared to the Scale network one (Lin
et al. [16]).

C. Impact of Gain Components

The context model [27], [28], [29] and the non-local attention
module [36] are commonly used in the learned-based image
compression methods to further reduce statistical redundancy
within the latent features and improve the probabilistic estima-
tion ability of the network. We conduct an ablation study to
evaluate the impact of the context model and non-local attention
module on our method in the Kodak dataset [19], as shown in
Fig. 15(c). We start from a baseline without the context model
and non-local attention module, i.e., W/O CM (context model)
and W/O NLAM (non-local attention module), and plot the
rate-distortion performance in green color. Then, we add the
non-local attention module (blue color) and context model (red
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color) to evaluate the performance. We can observe that using
the context model achieves the best results, while it requires high
computational costs (codec process takes about 233 seconds on
an Intel (R) Core (TM) i9-10900 K CPU on Kodak and includes
entropy encoding/decoding procedure). Once the context model
is removed, I2C could be implemented on GPU platforms in a
parallel computing manner and the codec time would reduce to
5.694 seconds on one NVIDIA RTX 3090 GPU. In addition,
even if the context model and non-local attention module are
removed from I2C, our method still outperforms Song et al. [1],
demonstrating the effectiveness of the proposed method.

D. The Suitability of INN for High-Fidelity Codec

To investigate the reason why our I2C could better handle
the problem, we further conduct the error accumulation analysis
during the re-encoding procedure. In the lossy image compres-
sion procedure of re-encodings, the error accumulation can be
described in the following formulation:

Δ = Δ1
e ◦Δ1

q ◦Δ1
d ◦Δ1

rc︸ ︷︷ ︸
Iteration 1

◦ Δ2
e ◦Δ2

q ◦Δ2
d ◦Δ2

rc︸ ︷︷ ︸
Iteration 2

◦

· · · ◦ΔN
e ◦ΔN

q ◦ΔN
d ◦ΔN

rc︸ ︷︷ ︸
Iteration N

, (19)

where ◦ denotes the function composition. During the n-th step
of the re-encoding iteration,Δn

q,Δn
e ,Δn

d, andΔn
rc denote error of

quantization, error of encoding transformation, error of decoding
transformation, and error of rounding and clipping, respectively.

In our proposed I2C, errors of encoding and decoding trans-
formation (Δn

e and Δn
d) are composed of small numbers of

nonlinear layers (e.g., dense block) and plenty of bijective
mapping layers. The error accumulation can be expressed as
the following:

Δn
ed-ours = Δn

e ◦Δn
q = Δn

nonlinear-1 ◦Δn
nonlinear-2 ◦Δn

bijective.
(20)

In the VAE-based method (e.g., [1]), errors of encoding and
decoding transformation (Δn

e and Δn
d) are composed of massive

nonlinear layers (e.g., resnet block). The error accumulation can
be expressed as the following:

Δn
ed-VAE = Δn

e ◦Δn
q = Δn

nonlinear-1 ◦Δn
nonlinear-2◦

· · · ◦Δn
nonlinear-T. (21)

The architecture of our proposed I2C is primarily composed of
bijective mapping layers, which exhibit a mathematical invert-
ible property to avoid discarding any information in the latent
space, resulting in preserving high fidelity. The error accumu-
lation in the encoding and decoding transformation of our pro-
posed I2C is much less than the VAE-based approach (Δn

ed-ours <
Δn

ed-VAE) (especially with the growing complexity of the model,
our I2C has a fixed small number of nonlinear layers while
the number of nonlinear layers T of the VAE-based method is
increasing). Therefore, our proposed I2C can achieve the high
fidelity of reconstructed images in the continuous codec process
more efficiently.

Fig. 16. Successive re-encodings on the Kodak [19] dataset with different
fixed rates. (a), (b) and (c), (d) are the results of the PSNR/PSNR Difference
Value and MS-SSIM/MS-SSIM Difference Value, respectively.

E. Impact of Re-encodings with Different Fixed Rates

We analyze the effect of re-encodings with different fixed
compression rates (λs) at low, medium, and high bpp, respec-
tively. Fig. 16(a), (c) illustrates the decay of PSNR/MS-SSIM
with increasing re-encoding operations at three different rates.
Fig. 16(b), (d) shows the gradual decrease of the PSNR/MS-
SSIM difference value between two adjacent re-encoding oper-
ations as the number of iterations increases. The reconstructed
image quality will be better at higher bits-per-pixel (BPP), as
shown in Fig. 16(a), (c). Besides, we also find that the decay ten-
dencies of the PSNR/MS-SSIM remain consistent for different
compression rates during re-encoding operations. As discussed
in Section VI-D, the accumulation of errors comes from four
aspects (refer to (19)), our proposed I2C greatly eliminates
the errors (Δn

e and Δn
d) generated by the encoding/decoding

transformation, since the number of nonlinear layers of our I2C
is small and fixed no matter the compression rate is. Thus given
different fixed λs, the system would gradually converge to a
stable state as the number of iterations increases, as verified by
Fig. 16(b), (d).

VII. CONCLUSION

In this paper, we propose a high-fidelity variable-rate image
compression method by introducing the Invertible Continuous
Codec (I2C). We construct the I2C based on Invertible Neural
Network (INN) with the core Invertible Activation Transfor-
mation (IAT) module implemented in a mathematical invertible
manner. IAT is actually a feature activation transform layer of the
INN and has the ability of fine variable-rate control by feeding
the quality level (QLevel) to generate the scaling and bias tensors
while better preserving the image fidelity. Extensive experiments
demonstrate that thanks to the invertible design of I2C, fewer
artifacts or color shifts would have appeared and the fidelity
of reconstructed images is better preserved, especially when
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multiple continuous re-encodings are executed under various
compression rates. I2C is also able to achieve fine variable-rate
control without any performance compromise.
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