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I2C: Invertible Continuous Codec for
High-Fidelity Variable-Rate Image Compression

Shilv Cai, Liqun Chen, Zhijun Zhang, Xiangyun Zhao, Jiahuan Zhou,
Yuxin Peng, Senior Member, IEEE , Luxin Yan, Sheng Zhong, Xu Zou*

Abstract—Lossy image compression is a fundamental technology in media transmission and storage. Variable-rate approaches have
recently gained much attention to avoid the usage of a set of different models for compressing images at different rates. During the
media sharing, multiple re-encodings with different rates would be inevitably executed. However, existing Variational Autoencoder
(VAE)-based approaches would be readily corrupted in such circumstances, resulting in the occurrence of strong artifacts and the
destruction of image fidelity. Based on the theoretical findings of preserving image fidelity via invertible transformation, we aim to tackle
the issue of high-fidelity fine variable-rate image compression and thus propose the Invertible Continuous Codec (I2C). We implement
the I2C in a mathematical invertible manner with the core Invertible Activation Transformation (IAT) module. I2C is constructed upon a
single-rate Invertible Neural Network (INN) based model and the quality level (QLevel) would be fed into the IAT to generate scaling
and bias tensors. Extensive experiments demonstrate that the proposed I2C method outperforms state-of-the-art variable-rate image
compression methods by a large margin, especially after multiple continuous re-encodings with different rates, while having the ability
to obtain a very fine variable-rate control without any performance compromise. The project is publicly available at
https://github.com/CaiShilv/HiFi-VRIC.

✦

1 INTRODUCTION

LOSSY image compression is one essential problem espe-
cially in such an information explosion era, due to the

increasing volume of visual data. A desired image compres-
sion method would effectively lower the data redundancy
with fewer bits consumption while better preserving the
image fidelity, for promoting applications of media shar-
ing, storage, and processing. In order to achieve this goal,
numerous classical image compression standards such as
JPEG [2], JPEG2000 [3], Webp [4], BPG [5], AVIF [6], and
Versatile Video Coding (VVC) [7] have been developed and
widely utilized in various practical applications. Over recent
years, remarkable progress has been made in learning-based
image compression methods, which have shown superior
performance in common metrics including PSNR and MS-
SSIM. By exploiting the potent nonlinear transformation ca-
pabilities of DNNs, these methods [8], [9], [10] achieve end-
to-end learning through a vast number of high-quality im-
ages, while minimizing the rate-distortion cost. Despite con-
siderable advancements, learning-based image compression
still poses challenges when it comes to adapting to variable-
rate compression. Most existing approaches involve training
multiple single-rate models for different rates, which results
in high storage and training costs.

To remedy the issue, enabling variable-rate control
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within a single model based on the Variational Autoencoder
(VAE) framework has attracted research interest [1], [11],
[12], [13], [14], [15]. The researchers first try to achieve
discrete rate adaptation using one single model. Choi et
al. [11] introduced conditional convolution and achieved
variable rate through two-stage training. Yang et al. [12]
proposed the modulated autoencoder and achieved discrete
adjustable compression rates by different Lagrange multipli-
ers. Chen et al. [13] inserted a set of scaling factors directly
before the quantizer to achieve the discrete adjustable com-
pression rates. However, the performance of these methods
would be dropped when conducting finer variable-rate con-
trol. Thus, the topic of fine rate adaptation has attracted
more attention recently. Sun et al. [14] obtained continuously
adjustable compression rate by linear interpolation. Cui et
al. [15] achieved continuous compression rate control by
exponential interpolation. Lin et al. [16] raised the scaling
network, which is purposefully developed to convert the
scalar value of the Lagrange multiplier to a vector, in order
to scale the feature map channel-wise and achieve variable
rate adaptation. Song et al. [1] conditioned on the quality
map and achieved the variable rate, which requires semantic
segmentation labels for training. Though these methods
have the ability of fine variable-rate compression control,
they need additional gain modules or semantic labels to
maintain the performance.

Besides, in the current social-networking epoch, images
would be shared and transmitted multiple times among
numerous entities (e.g., one person may download a com-
pressed image from Facebook and then send it to his friend
via WeChat under another re-encoding). It would be par-
ticularly interesting for a variable-rate image codec if the
fidelity of images could be preserved once continuous com-
pression/decompression operations are executed. However,
state-of-the-art VAE-based variable-rate approaches (e.g.,
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Fig. 1: Reconstructed images of variable-rate compression methods after different numbers of compression/decompression
operations. It broadly occurs in image sharing among social platforms. Severe artifacts and color shifts would appear (see
regions in red circles) in the state-of-the-art VAE-based approach [1] once multiple continuous re-encodings are executed,
in contrast to fewer artifacts and higher fidelity results achieved by our proposed approach. High-fidelity preserving with
fine variable-rate control is the main advantage and novelty of our work.

Song et al. [1]) would be readily corrupted once multiple
continuous re-encodings are executed, resulting in the fact
that image quality would be tremendously dropped. Strong
artifacts and color shifts would appear, as shown in Figure 1.
The main reason is that the autoencoder transforms the
image to a low-dimensional latent space and irreversibly
discards information before quantization, imposing an im-
plicit limitation on the reconstruction quality. To alleviate
information loss, Invertible Neural Networks [17], [18] have
gained much attention to effectively preserve fidelity. It is
worth noting that VAE-based variable-rate methods cannot
be directly fused into the INN-based framework since im-
plementations of their variable-rate control do not satisfy
the bijective mapping property. Whether it is possible to
introduce conditional control in the INN-based framework
to achieve variable rate has not been analyzed and derived
from a theoretical basis so far.

In this paper, we first carry out in-depth theoretical
analyses and mathematical derivations of condition-based
invertibility. Based on the exploration of conditional con-
trol invertibility, we propose the Invertible Continuous
Codec (I2C). Invertible Activation Transformation (IAT) is
the core module of I2C that exhibits a mathematical in-
vertible property to avoid discarding any information in
the latent space to preserve high fidelity. I2C is constructed
upon a single-rate Invertible Neural Network (INN) based
model and the quality level (QLevel) would be fed into
the IAT to generate scaling and bias tensors. IAT and
QLevel together give I2C the ability of fine variable-rate
control while better preserving the image fidelity. We ini-
tially extend the mathematical invertibility to the variable-
rate image compression. Moreover, the proposed image
compression method attempts to achieve finer control of
multiple variable rates, by presenting a compatible tensor-

based Lagrange multiplier to train the whole model. The
contributions of our proposed method are 4-folded:

• We propose an effective yet neat variable-rate image
compression method named Invertible Continuous
Codec (I2C) under the design of a conditional in-
vertible manner to achieve the high fidelity of recon-
structed images, especially after multiple continuous
variable-rate image compression/decompression op-
erations. This issue is rarely investigated so far.

• In-depth theoretical analyses and mathematical
derivations of condition-based invertibility are pro-
vided. With the theoretical foundation to support it,
the proposed I2C can be easily applied to different
INN frameworks.

• I2C achieves fine variable-rate control without any
performance compromise by storing only byte-level
additional information in the bitstream directly (e.g.,
once 2 bytes are adopted, 216 = 65536 effective fine
variable rates are achieved).

• Extensive experiments demonstrate the superiority
of our proposed I2C in image fidelity preserving,
rate-distortion performance, and fine rate adaptation
over three datasets, including Kodak [19], CLIC [20],
and DIV2K [21]. Besides, we conduct comparison ex-
periments on practical biomedical and remote sens-
ing images to show the application potential of it.

This manuscript is an extension of our previous confer-
ence paper [22], while we have made plenty of extensions
including 1) Thorough theoretical analyses and mathemati-
cal derivations of the condition-based invertibility, which is
the footing stone of our high-fidelity fine variable-rate image
continuous re-encodings, are provided. With the theoretical
foundation to support it, our proposed I2C can be easily ap-
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plied to different INN frameworks. We present the rational-
ity of I2C, which can be considered as a kind of conditional
invertible neural network, for variable-rate image compres-
sion. We also present why the IAT module can be integrated
with affine coupling layers, to jointly construct I2C and
implement the invertible design, finally forming conditional
affine coupling layers. 2) The proposed I2C is additionally
implemented into other three INN-based single-rate image
compression architectures to evaluate the robustness of our
proposed method. We use three different Invertible Neural
Networks from Incompressible-flow Network (GIN) [23],
NICE [24], and GLOW [25] instead of the original architec-
ture, initially proposed in RealNVP [26] and adopted by the
invertible block of baseline model [18], to verify that the pro-
posed I2C can adapt to different INN-based architectures.
I2C with different INN-based architectures are consistently
able to achieve fine variable-rate control while preserving
high fidelity. Such additional experiments show that I2C
is a plug-and-play method that can be readily integrated
into INN-based single-rate image compression frameworks
to enhance their abilities without harming invertibility. 3) To
further facilitate the codec efficiency and alleviate the com-
putation burden, an optimized model is redesigned accord-
ing to the complementary analyses of the characteristics of
the network structure. Compared with the previous model,
the number of parameters of this optimized version has
been reduced by 1/3 without any performance compromise.
4) Supplementary experiments on finer variable-rate control
are conducted. The mechanism of achieving such ability
is analyzed and discussed in depth. The analysis shows
that the small amount of additional bitstream storage can
generate a large number of fine variable rates, which is
quite practical in real-world applications. 5) Variable-rate
multiple continuous re-encodings comparison experiments
with 4 more single-rate typical image compression methods
are further carried out to demonstrate the superiority of our
proposed method. We also add the comparison experiment
with the variable rate method of Lin et al. [16] to validate
the effectiveness of our proposed method further. Besides,
we conduct supplementary comparison experiments on
practical biomedical and remote sensing images to show its
application potential.

2 RELATED WORK

In recent years, the application of neural networks in image
compression has attracted widespread attention. The Varia-
tional Autoencoder (VAE) [8], [9], [10], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
[43], Invertible Neural Network (INN) [17], [18], [44], [45]
and Generative Adversarial Networks (GAN) [46], [47], [48],
[49], [50] based methods have achieved surprising results.

2.1 Learned Single-Rate Image Compression

The VAE-based framework is used as a nonlinear transfor-
mation coding model, which is the main approach in the
learned image compression method. The works [8], [9], [10]
were the first to use CNN for end-to-end image compres-
sion and inspired many learning-based image compression
methods. The work [10] introduced a hyperprior entropy

model to capture the zero-mean Gaussian distribution of
the latent representations. The works [27], [29] used the
Gaussian model with the non-zero mean to improve the
ability to model latent representations. Later works [27],
[28], [29] further removed redundancy in potential features
using the context model. By using the global similarity
within the context, Li et al. [39] proposed a special non-
local operation for context modeling. To exploit a serial
decoding process for causal contextual entropy prediction
in latent space, Guo et al. [40] proposed the concept of
separate entropy coding. Further, the 3D-context entropy
model [30], multi-scale hyperprior entropy model [32], and
discretized Gaussian mixture model [33] were used to fur-
ther improve the entropy model. In addition, channel-wise
module [34], attention module [33], [35], non-local atten-
tion module [36], [51], and content-weighted methods [43],
[52], [53] were used to extract better latent representations.
Recently transformer was used to capture long-range de-
pendencies in probability distribution estimation effectively
and efficiently [54], [55], [56]. The first successful attempt
to apply a transformer-based method to image compression
was made by Qian et al [54]. Lu et al. [56] proposed the
neural transformation unit as the basic module. It consists
of a Swin Transformer block and a convolutional layer for
better information embedding. In addition, Cai et al. [43]
proposed the deep learning-based unified framework that
allows for rate-distortion optimization for ROI image com-
pression. Abhijith Punnappurath and Michael S. Brown
investigated the ability of deep image compressors to be
”aware” of the additional goal of raw reconstruction. David
et al. [42] proposed a two-step learning-based image com-
pression method to build convolution neural networks for
the analysis of gigapixel images using only weak labels at
the image level.

Most learning-based image compression methods need
to train different network models for various compression
rates, which not only increases the storage of computational
resources but also is not compatible with practical applica-
tions. Therefore, using one single model to achieve variable
rate adaptation was widely studied.

2.2 Learned Variable Rate Image Compression

Initially, LSTM networks [57], [58], [59] control different
compression rates by the different number of iterations. The
more iterations, the clearer the reconstructed image would
be. However, the LSTM-based approach cannot outperform
JPEG2000 [3] in rate-distortion performance and would
not obtain continuous compression rates. LSTM-based ap-
proaches use a large number of 3 × 3 × 512 × 512 network
layers, such a structure can make the network computation-
ally slow. In addition, the iterative procedure is also time-
consuming. Thus it is not suitable for practical applications.
Then Choi et al. [11] introduced conditional convolution in
the autoencoder framework to achieve variable-rate adapta-
tion with a single model through two-stage training.

However, while the variable rate is achieved, the rate-
distortion performance degrades and there is a dilemma in
choosing the appropriate Lagrange multiplier and quanti-
zation step size for forward inference. Yang et al. [12] pro-
posed a modulated autoencoder that achieved the discrete
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Fig. 2: The framework of I2C. We insert IAT into the Invertible Neural Network section and utilize it to generate
element-wise activation parameters of features from the input quality level (QLevel). IAT and QLevel together give
I2C the ability of fine variable-rate control while preserving the image fidelity especially when multiple continuous
compression/decompression operations are executed. EC/ED means entropy encoding/decoding respectively. Q is the
quantizer. Parameters (µ, σ) of the context entropy model are used to support EC/ED.

adjustable compression rate with a single model by different
Lagrange multipliers. Thesis et al. [9] first trained the model
with high bits per pixel (bpp) and then fixed the net-
work model parameters to train the scaling parameters for
different compression rates. However, the network model
suffered from incongruity with the scaling parameters, es-
pecially in low bpp cases. Chen et al. [13] inserted a set of
scaling factors directly before the quantizer to achieve the
discrete variable compression rate. Mei et al. [38] proposed
an end-to-end optimized quality and spatial scalable image
compression model (QSSIC) to achieve variable rates.

Recently, research has been conducted on continu-
ous compression rate adjustable [1], [14], [15], [16]. The
work [15] introduced a series of vector pairs for coarse
compression rate control and then achieved continuous
compression rate control by exponential interpolation. Lin et
al. [16] used the scaling network, which is designed to map
the scalar value of the Lagrange multiplier into a vector, to
scale the feature map channel-wise achieving the variable
compression rate. Sun et al. [14] extended the work [11],
which obtained a continuously adjustable compression rate
by linear interpolation. Song et al. [1] conditioned the qual-
ity map by spatial feature transform (SFT) [60] to control
different compression rates.

VAE-based variable-rate approaches have been exten-
sively researched. However, those methods suffer from se-
vere information distortion after multiple continuous oper-
ations of compression/decompression for the same image.
The distortion becomes more explicit as the number of
operations increases.

2.3 Invertible Neural Networks

Invertible neural networks (INNs) are generative models
that transform complex distributions into simple ones, al-
lowing for accurate and efficient probability density estima-
tion. INNs have a bijective mapping of input and output,
which is ideal for image compression.

NICE [24] introduced a flexible architecture that can
learn highly nonlinear bijective transformations to represent
data with simple distributions. Based on NICE [24], Real-
NVP [26] further extended the idea of hierarchical and com-
binatorial transformations, which used affine coupling and
a multi-scale framework. Kingma et al. [25] proposed a gen-
erative flow model based on a 1×1 invertible convolutional
network with a significant improvement in log-likelihood
on a standard benchmark dataset, having the advantages of
exact controllability of log-likelihood, the tractability of ex-
act inference of latent representations, and parallelizability
of training and synthesis. It shows that a generative model
optimized for the simple log-likelihood objective is capable
of efficiently synthesizing and manipulating large images in
a realistic way. Ardizzone et al. [61] demonstrated that the
validity of INNs is suitable not only for synthetic data but
also for two practical applications in medicine and astro-
physics. Sorrenson et al. [23] generalized the theory to the
case of an unknown intrinsic problem dimension, proving
that in some special (but not very restrictive) cases, informa-
tive latent variables are automatically separated from noise
by an estimator. SRFlow [62] has designed a conditional
normalizing flow architecture to solve the ill-posed problem
in the super-resolution task. Xiao et al. [63] proposed an
invertible rescaling network (IRN), which constructed a bi-
jective transform to effectively implement the reconstruction
of low-resolution into high-resolution images.

INN greatly alleviates the information loss problem for
better image compression, as in [17], [18], [44], [45], [64]. But
no one has specifically studied variable-rate image compres-
sion with a single model based on the INN framework.

3 METHODOLOGY

3.1 Framework
Our image compression approach I2C is depicted in Fig-
ure 2. The proposed method implements fine variable-rate
modulation in an invertible neural network framework,
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Fig. 3: Illustration of the IAT module. The forward and
inverse transformation of the IAT module implements the
bijective mapping. This module takes the QLevel and fea-
ture as input to generate element-wise activation parameters
β and γ, further obtaining the output results. Thus, the for-
ward and inverse procedures are mathematically invertible,
enhancing the fidelity of reconstructed images.

which involves the invertible activation transformation
(IAT) module to control different compression rates through
different quality levels. We present the detailed procedure
of the model in the following: Firstly, the source image
x ∈ R3×H×W is enhanced by the dense block module [65] to
generate a nonlinear representation of u ∈ R3×H×W , where
H and W denote the height and width of the input image
respectively. Then the forward pass of the Invertible Neural
Network section, which is equipped with the proposed IAT
module, transforms u to a latent representation, conditioned
on the quality level L ∈ RH×W to control the compression
rate. This latent representation would be further fed into the
Attention Channel Squeeze module to reduce the number
of channels and obtain the potential representation y. This
procedure could be formulated by a parametric analysis
transform function, i.e.:

y = ga(x, L), (1)

the discrete latent features ŷ are obtained by quantification
of y, i.e., ŷ = Q(y). We use the quantizer Q(·) in Ballé
et al. [10] to model the quantized latent representation ŷ
approximately by adding the uniform noise U(−0.5, 0.5) to
the latent representation y during training and rounding the
latent representation y during testing. The context entropy
model generates parameters µ and σ of the Gaussian en-
tropy model that approximates the distribution of quantified
latent representation ŷ to support the entropy encoding.
We use range asymmetric numeral system [66] to losslessly
compress latent representation ŷ and ẑ into bitstreams.

The inverse calculation takes the quantified latent repre-
sentation ŷ and the quality level L as the input, and recon-
structs the decompressed images by a parametric synthesis
transform, which is formulated as follows:

x̂ = gs(ŷ, L). (2)

3.2 Invertible Activation Transformation
We proposed the invertible activation transformation (IAT)
module to enhance the invertible neural network, which
efficiently generates the desired compressed representation
conditional on the quality level L. The proposed IAT mod-
ule can achieve variable-rate adaption on a single model
while preserving the image fidelity, especially after multiple
continuous compression/decompression operations, in a
mathematical invertible manner.

The forward transform of the IAT module is illustrated
by pink arrows on the top of Figure 3. The inputs are
the quality level L and the feature s. The element-wise
activation parameters γ ∈ Rc×h×w and β ∈ Rc×h×w are
then calculated by the IAT module from the quality level L
via convolutional operations. These activation parameters
would be applied to the feature s via the Equation 3 to
generate the feature e:

e = (s ⊙ β)⊕ γ, (3)

where ⊙ denotes the Hadamard product and ⊕ denotes the
addition by element. c, h, and w are the channel, height, and
width of the feature, respectively.

The inverse transform of the IAT module is illustrated
by green arrows at the bottom of Figure 3. The input quality
level L and features ê are applied to obtain the feature ŝ.
This inverse transform is formulated by Equation 4:

ŝ = (ê ⊖ γ)⊘ β, (4)

where ⊖ denotes the subtraction in elemental order, ⊘
denotes the division by elemental order. Once the quality
level L is the same in both forward and inverse procedures,
the invertibility of the operation between the features s and
e can be guaranteed.

In the previous work [13], a set of scaling factors was
inserted directly before the quantizer to achieve the discrete
adjustable compression rate. In our algorithm, the activation
parameters are element-wise, which means that the IAT
module is computed as a spatial feature transform rather
than a simple channel weighting. Moreover, the IAT module
is attached after each invertible block which is initially pro-
posed in RealNVP [26] and adopted by baseline model [18],
not just inserted before the quantizer. These adjustments not
only make fine variable-rate adaptation available but also
turn out to better performance, the experiment ”Impact of
the QLevel Representation” in section 6.2 shows its effec-
tiveness, and the results are shown in Figure 15.

3.3 Fine Variable-Rate Control
Unlike interpolation-based methods [14], [15] for obtaining
finer compression rates, our method achieves the fine com-
pression rate adaptation directly by modulating the quality
level L, which is more convenient when controlling the
compression rate by only one parameter instead of two.
Compared to Song et al. [1], our method does not require
additional semantic labels, either.

The goal of lossy image compression is to minimize the
length of the bits stream and the distortion between the
source image x and the reconstructed image x̂. The opti-
mization function is always expressed in the rate-distortion:

L = R+ λD, (5)
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where λ is the Lagrange multiplier which determines the
trade-off between the rate R and the distortion D. Theo-
retically, as long as the set of Lagrangian multiplier λ is
large enough, it is possible to achieve fine compression rate
control, but in practice, the computational cost is too high.
For interpolation-based methods, the Lagrangian multiplier
λ is a scalar. Thus, at each iteration during training, only
one element in a finite set of λ would be randomly selected
for optimization. In order to further promote the R-D per-
formance of our model, we use a tensor instead of the scalar
λ. Our optimization function implements fine variable-rate
control by minimizing the rate-distortion:

Loss = R+ Λ⊙ D, (6)

where dimensions of Λ ∈ RC×H×W and the distortion
D ∈ RC×H×W are the same as the dimension of the original
input image. ⊙ denotes the Hadamard product. In this
formulation, Λ is a tensor and no longer a finite set of
constant scalars. Thus, D measures pixel-wise distortion and
is defined as D =

∑T
i=1 λi(xi−x̂i)

2

T , T indicates the number
of image pixels, λi is the Lagrangian multiplier, xi and x̂i

denote one pixel of the original image x and reconstructed
image x̂, respectively.

Λ is simply calculated from the quality level L via
a monotonically increasing function: Λ = V (L), where
V : RN → RT . V (L) = θ × eτ×L, θ = 0.0012, τ = 4.382,
the process of dimensioning from RN → RT is done by
direct replication between channels. L = [li]i=1:N , li ∈ [0, 1],
N = H × W , T = C × H × W . C , H , and W denote the
channel, height, and width of the source image x, respec-
tively. Under such a paradigm, we implement this pixel-
wise distortion constraint by randomly generating values
of each element of the tensor Λ via the quality level L
during training. This is equivalent to increasing the number
of λ values selected at each iteration. So, the fine variable-
rate control can be obtained by feeding exact quality levels
during the testing.

As in other learning-based method [10], the log-
likelihood of the coded features ŷ is estimated by a proba-
bilistic model to replace the true compression rate R. Finally,
the training loss would be:

Loss =− log2Pŷ(ŷ|x,Λ)− log2Pẑ(ẑ|x,Λ)

+

∑T
i=1 λi(xi − x̂i)

2

T
,

(7)

where ŷ and ẑ are quantized latent representations and
side information respectively. pŷ(ŷ|x,Λ) = N (µ, σ2), µ and
σ denote the estimates of the mean and standard devia-
tion of the quantified latent representation ŷ. pẑ(ẑ|x,Λ) =
N (µ1, σ

2
1), µ1 and σ1 denote the estimates of the mean

and standard deviation of the quantified side information
ẑ. The side information usually represents the hyperprior
originally proposed in [10] and refers to the extra stream ẑ
generated by the ”Context Entropy Model” in Figure 2. It
is worth noting that this loss function would be degraded
to the standard rate-distortion optimization function if all
elements of the tensor quality level L are the same.

In addition, our method can be trained on arbitrary
unlabeled data instead of requiring semantic segmentation
labels corresponding to the original data, which is different
from Song et al. [1], for training the model.

4 THEORETICAL ANALYSES AND DERIVATIONS

Thanks to the invertible design, I2C can better pre-
serve image fidelity, especially after multiple continuous
re-encodings with different compression rates. Here, we
present the mathematical derivation of such a design and
show why fidelity preservation works.

4.1 Conditional Invertible Neural Network for Lossy Im-
age Compression

In this subsection, we would like to present the rationality of
I2C, which can be considered a kind of conditional invertible
neural network, for variable-rate image compression. Lossy
image compression usually can be divided into three mod-
ularized components: transform, quantization, and entropy
coding. The goal of lossy image compression is to transform
the original image x to symbols ŷ to be entropy coded.
Typical learned single-rate image compression approaches
learn a deterministic mapping x 7→ ŷ when given the
trade-off λ in Equation 5. We aim to get the conditional
distribution Pŷ|x(ŷ|x, λ), and different mappings from x to
ŷ are achieved by different λ. Finally, different compression
rates can be obtained by different λ.

The key idea of the invertible neural network (INN) [24],
[26] is to parameterize the distribution pv|u by the INN
fϕ. When introducing conditional settings, fϕ makes the
deterministic mapping to the variable latent representation
v = fϕ(u, λ). If the function fϕ is invertible, the original
feature u can be obtained from the latent representation v
as u = f−1

ϕ (v, λ). The core aspect of the invertible neural
network is that the probability density pv|u can be explicitly
computed as:

pv|u(v|u, λ, ϕ) = pu|v(f
−1
ϕ (v, λ))

∣∣∣∣∣det∂f
−1
ϕ (v, λ)

∂v

∣∣∣∣∣
−1

. (8)

It is derived by applying the change-of-variables formula for
densities, where the second factor is the resulting volume

scaling given by the determinant of the Jacobian
∂f−1

ϕ (v,λ)

∂v .
The Equation 8 allows us to train the network by optimiz-
ing L through minimizing the negative log-likelihood for
training the invertible function fϕ:

L(ϕ;u, v, λ) = −log pv|u(v|u, λ, ϕ)

= −log pu|v(f
−1
ϕ (v, λ))− log

∣∣∣∣∣det∂f
−1
ϕ (v, λ)

∂v

∣∣∣∣∣
−1

.

(9)

In this formulation, for preventing the collapse of the
latent space, the Jacobian log-determinant is adopted in-
spired by [45]. In our implementation, we can use the
reconstruction item d(u, û) instead of it. In the Figure 2,
when we consider combining dense block and attention
channel squeeze, d(x, x̂) is involved in the distortion item.
Meanwhile, the side information ẑ of the entropy model
should be considered. That is, the total loss could be formu-
lated as:

Loss = −log pŷ(ŷ|x, λ)− log pẑ(ẑ|x, λ) + λd(x, x̂). (10)
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4.2 Conditional Affine Coupling Layers
In this subsection, we present why the IAT module can be
integrated with affine coupling layers [24], [26], to jointly
construct the I2C and implement the invertible design. The
invertible neural network fϕ can be decomposed into a se-
quence of invertible layers. In fact, combinations of the IAT
module and the affine coupling layer, which is contained in
the invertible block in Figure 2, can compose a sequence of
conditional affine coupling layers. The ith conditional affine
coupling layer takes an input u(i)

1:C with dimensional size of
C . It splits the inputs at cth channel into two parts and gets
the output u(i+1)

1:C with the channel dimension of C under
the condition λ:

Θ
(i+1)
1:c = u

(i)
1:c ⊙ exp(σc(g2(u

(i)
c+1:C))) + h2(u

(i)
c+1:C), (11)

u
(i+1)
1:c = Θ

(i)
1:c ⊙ β

(i+1)
1:c + γ

(i+1)
1:c , (12)

Ψ
(i+1)
c+1:C = u

(i)
c+1:C ⊙ exp(σc(g1(u

(i+1)
1:c ))) + h1(u

(i+1)
1:c ), (13)

u
(i+1)
c+1:C = Ψ

(i+1)
c+1:C ⊙ β

(i+1)
c+1:C + γ

(i+1)
c+1:C , (14)

where ⊙ denotes the Hadamard product, exp(·) denotes
the exponential function, and σc(·) denotes the sigmoid
function. The β(i) and γ(i) are calculated by the condition
λ (details are mentioned in Section 3.2). g1, g2, h1, and h2 can
be any feedforward functions and need not be invertible.
During the inverse processing, the ith conditional affine
coupling layer inversely takes u

(i+1)
1:C as input and split it

at cth channel. The conditional affine coupling layer gives a
perfect inverse:

Ψ
(i)
c+1:C = (ui+1

c+1:C − h1(u
(i+1)
1:c ))⊙ exp(−σc(g1(u

(i+1)
1:c ))),

(15)
u
(i)
c+1:C = (Ψ

(i)
c+1:C − γ

(i)
c+1:C)⊘ β

(i)
c+1:C , (16)

Θ
(i)
1:c = (u

(i+1)
1:c − h2(u

(i)
c+1:C))⊙ exp(−σc(g2(u

(i)
c+1:C)))),

(17)
u
(i)
1:c = (Θ

(i)
1:c − γ

(i)
1:c)⊘ β

(i)
1:c, (18)

where ⊘ denotes the division by elemental order. Through
the above equations, the invertibility is inherently guaran-
teed by the mathematical design. When the features are
calculated in these conditional affine coupling layers, the in-
formation will not be lost, and the fidelity of the information
will be elegantly preserved.

5 EXPERIMENTS

5.1 Implementation Details
Details For Training
In our implementation, the network of Xie et al. [18] is
adopted as our basic architecture. The training datasets
contain Flicker 2W [67] and COCO [68]. Our network is
trained on 256×256 randomly cropped patches and discards
images less than 256px in height or width during data
pre-processing. All experiments are conducted in the RGB
space. In training, the quality level L needs to be sent to the
INN section as a condition during the forward and inverse
transform. The quality level L takes a uniform value tensor
between (0,1) during the testing and is randomly sampled
between (0,1) during the training. Our implementation relies
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Fig. 4: Successive re-encodings on the Kodak dataset. (a) and
(c): Compression rates of each compression/decompression
operation are different. (b) and (d): The compression rate is
fixed. Our approach outperforms baseline [18] and Song et
al. [1] (a SOTA variable-rate approach) by a large margin to
show the superiority of fidelity preserving especially when
multiple continuous operations are executed.

on Pytorch [69] and an open-source CompressAI PyTorch
library [70]. All experiments were conducted on RTX 3090
GPU and trained for about 2.5M iterations with batch size
8. Adam optimizer [71] is used to optimize the parameters,
there were multistage learning rates {1e − 4, 5e − 5, 1e −
5, 5e − 6, 1e − 6, 5e − 7} that changed with boundaries
{1000000, 1300000, 1600000, 1900000, 2200000, 2500000}.

Details For Testing
We evaluate the rate-distortion performance on three com-
monly used datasets. The Kodak [19] contains 24 lossless
images with a size of 768× 512. The CLIC Professional Val-
idation dataset [20] comprises 41 high-quality images with
much higher resolution. The DIV2K validation dataset [21]
contains 100 images with high resolutions of 2K. We draw
curves based on the rate-distortion performance to compare
the coding efficiency of different methods. We also calculate
the area under the rate-distortion curve to observe the
performance difference more effectively.

5.2 Fidelity for Re-encoding
In order to verify the ability of high fidelity preserving of
I2C, our method is compared with the latest VAE-based
variable-rate method proposed by Song et al. [1] according
to their official codes. Since their method does not use a
context model, we remove the context model and add the
non-local attention module [36] in the hyperprior layer for
our approach to make a fair comparison.
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Fig. 5: Multiple continuous re-encodings on the Kodak
dataset [19]. The compression rates of each compres-
sion/decompression operation are changed. Our approach
compares with several typical single-rate image compres-
sion methods including (a) and (b): Ballé et al. [10], (c) and
(d): Minnen et al. [29], (e) and (f): Chen et al. [36], (g) and
(h): Hu et al. [32] on metrics of PSNR and MS-SSIM respec-
tively. Our approach outperforms them by a large margin to
show the superiority of fidelity preserving especially when
multiple variable-rate re-encodings are executed. Besides, it
is worth noting that those single-rate models need different
models to adapt to various compression rates while our I2C
is a variable-rate method.
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Fig. 6: Multiple continuous re-encodings experiments com-
paring with recent Transformer-based single-rate image
compression methods on the Kodak [19] dataset. (a) and
(b): Qian et al. [54], (c) and (d): Lu et al. [56] on metrics of
PSNR and MS-SSIM respectively. Our I2C also consistently
outperforms the Transformer-based methods further show-
ing its robustness and advantages.

Figure 4 (a) and (c) show the performance after multiple
continuous operations of compression/decompression with
different compression rates. Both approaches change from
high to low bpp ranges. Our I2C adopts bpp in the set of
{1.027, 1.027, 1.012, 1.012, 0.995, 0.995, 0.978, 0.978, 0.962,
0.962, 0.946, 0.946, 0.929, 0.929, 0.913, 0.913, 0.897, 0.897,
0.881, 0.881, 0.866, 0.866, 0.851, 0.851, 0.836, 0.836, 0.821,
0.821, 0.806, 0.806, 0.791, 0.791} and Song et al. [1] adopts
bpp in the set of {1.039, 1.039, 1.025, 1.025, 1.009, 1.009,
0.993, 0.993, 0.977, 0.977, 0.961, 0.961, 0.945, 0.945, 0.929,
0.929, 0.913, 0.913, 0.897, 0.897, 0.881, 0.881, 0.866, 0.866,
0.851, 0.851, 0.835, 0.835, 0.820, 0.820, 0.805, 0.805}. It is
clearly seen that our method outperforms Song et al. [1]
by a large margin, after multiple continuous variable-rate
re-encodings. Figure 4 (b) and (d) show the performance by
multiple operations with the fixed compression rate. Both
approaches achieve a bit rate of 0.791 bpp for all steps. Also,
our method achieves better results significantly, compared
with Song et al. [1] and baseline [18]. In Figure 4 (b) and
(d), our model outperforms the fixed-rate baseline [18] and
the variable-rate Song et al. [1] by a large margin on both
PSNR and MS-SSIM. The results indicate that our proposed
IAT module is powerful to maintain image fidelity, which is
important for practical applications.

Figure 5 (a) and (b) show the performance between our
I2C and Ballé et al. [10] after multiple operations of com-
pression/decompression with different compression rates.
Both approaches change from high to low bpp ranges with
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Fig. 7: Qualitative results after different numbers of compression/decompression operations under various rates. The
two images (kodim1.png and alexander-shustov-73.png) are from the Kodak dataset and the CLIC dataset, respectively.
Severe artifacts and color shifts would appear in the state-of-the-art VAE-based approach [1] once multiple continuous
operations are executed, in contrast to better fidelity preserving of our approach. N indicates the number of compres-
sion/decompression operations. Best viewed in color.
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Fig. 8: Visualization of sample images in Kodak dataset.
Compared with single-rate methods (Ballé et al. [10], Min-
nen et al. [29], Chen et al. [36]), and Hu et al. [32] which need
multiple models to achieve different compression rates. For
each comparison, we adjust the bpp of our I2C to adapt
those methods. Our I2C has much better fidelity-preserving
performance and is a variable-rate method.

the bpp set of {0.939, 0.669, 0.478, 0.320, 0.209, 0.131}.
Figure 5 (c) and (d) show the performance between our I2C
and Minnen et al. [29] with the bpp set of {0.885, 0.639,
0.432, 0.288, 0.187, 0.111}. Figure 5 (e) and (f) show the
performance between our I2C and Chen et al. [36] with

the bpp set of {0.859, 0.623, 0.419, 0.274, 0.177}. Figure 5
(g) and (h) show the performance between our I2C and
Hu et al. [32] after multiple re-encodings with different
compression rates. Both approaches change from high to
low bpp ranges with a bpp set of {0.796, 0.411, 0.309, 0.208}.
Figure 6 (a) and (b) show the performance comparison
between our proposed I2C and Qian et al. [54] with bpp
set of {0.931, 0.593, 0.406, 0.263, 0.145}. Figure 6 (c) and (d)
show the performance comparison between our proposed
I2C and Lu et al. [56] with bpp set of {0.864, 0.614, 0.431,
0.286, 0.185, 0.112}. It is clearly seen that our proposed
I2C consistently outperforms those learning-based (includ-
ing VAE and Transformer) methods by a large margin,
after multiple continuous variable-rate re-encodings. We
also conduct extra apple-to-apple experiments on the CLIC
dataset. The experimental results are shown in Table 1.
The results also indicate that our proposed IAT module is
powerful to maintain image fidelity, which is important for
practical applications.

Figure 7 illustrates the results of multiple continuous re-
encodings on the same image with different compression
rates. With operations increasing, our proposed method
shows higher fidelity while the VAE-based method [1]
gradually raises severe artifacts and color shifts. Figure 8
is the visualization results showing those single-rate image
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Fig. 9: Qualitative results after different numbers of re-encoding operations (expanding from 31 to 91) under various rates.
Severe artifacts and color shifts would appear in the Song et al. [1] once multiple continuous operations are executed.
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Fig. 10: Up to 91 successive re-encodings on the Kodak [19]
dataset. The compression rates of each re-encoding opera-
tion are different. I2C outperforms Song et al. [1] by a large
margin to show the superiority of fidelity preserving espe-
cially when multiple continuous operations are executed.

compression methods compared with our I2C during the
variable-rate re-encodings on same images. All images of
the single-rate methods are the results of the corresponding
last iteration in Figure 5. It is noted that the single-rate
methods (Ballé et al. [10], Minnen et al. [29], Chen et al. [36],
and Hu et al. [32]) adopt different parameter models for the
different compression rates. For each comparison, we adjust
the bpp of our I2C to adapt those methods.

We further construct re-encoding experiments with
more (expanding from 31 to 91) iteration operations. The
visualization results (up to 91 re-encodings with different
compression rates) are shown in Figure 9. Figure 10 (a)
and (b) show the performance after multiple continuous
operations of compression/decompression with different
compression rates on the Kodak [19] dataset. The exper-
imental results further indicate that our proposed I2C is
more powerful in maintaining image fidelity with increasing
re-encoding operations (I2C maintains great image fidelity
even 91 iterations are executed).

Besides, we conduct experiments on biomedical and
remote sensing images to show the superiority of I2C for
practical images of different domains. Figure 11 shows
the qualitative results after different numbers of compres-

TABLE 1: Fixed-rate re-encoding evaluation on CLIC
dataset. The AUC is the Area Under the “Iterations”-
“PNSR”/“MS-SSIM” Curves. 32 re-encodings with a fixed
rate (bpp=0.318) are adopted. The superior results on fixed
rates show that the proposed IAT module surprisingly en-
hances the fidelity maintenance ability of the baseline [18].

Method PSNR(AUC)↑ MS-SSIM(AUC)↑
Song et al. [1] 865.287 388.634
Baseline [18] 856.338 410.114

Ours 967.805 419.554

sion/decompression operations under various rates com-
pared with the state-of-the-art VAE-based approach [1].
Figure 12 is the visualization results showing those single-
rate image compression methods compared with our I2C
during the variable-rate re-encodings. Consistently, I2C out-
performs those methods by a large margin and preserves
the image fidelity much better, especially after multiple
continuous re-encodings.

The results indicate that our proposed I2C is powerful
to preserve image fidelity, which is important for practical
applications such as media online sharing and cooperative
media processing.

5.3 Rate-Distortion Performance

To verify the general validity of the proposed approach, we
conduct rate-distortion (RD) performance experiments on
three datasets, i.e., Kodak [19], CLIC [20], and DIV2K [21].
We compare our approach with seven recent state-of-the-art
learning-based image compression methods [1], [18], [32],
[33], [54], [56], [72], [73], [74] and three classical codec meth-
ods, BPG [5], AVIF [6], and VVC [7]. The results of learning-
based methods are collected from their official GitHub
pages or their papers. The VCC approach is implemented
by the official Test Model VTM 12.1 with the intra-profile
configuration from the official GitHub page. Both VVC and
BPG software were configured with the YUV444 format
to maximize compression performance. AVIF [6] approach
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Fig. 11: Qualitative results after different numbers of com-
pression/decompression operations under various rates on
practical biomedical and remote sensing images. A similar
conclusion of Figure 7 can be achieved that severe arti-
facts and color shifts would appear in the state-of-the-art
VAE-based approach [1] once multiple continuous opera-
tions are executed, in contrast to better fidelity preserv-
ing of our approach. N indicates the number of compres-
sion/decompression operations. Best viewed in color.

TABLE 2: Area under curve (AUC) of our method and Xie
et al. [18] (Baseline) on different datasets about PSNR and
MS-SSIM. The bpp range is determined by the intersection
of two methods. Our approach makes a single-rate baseline
compression model achieve the variable-rate ability and
even outperforms the baseline in R-D performance.

Dataset Xie et al. [18] Ours
AUCPSNR AUCMS-SSIM AUCPSNR AUCMS-SSIM

Kodak 32.7866 16.5030 32.7883 16.5036
CLIC 23.5896 11.7463 23.7082 11.8571

DIV2K 28.0998 14.7868 28.2138 14.8901

is implemented by the official GitHub page. We configure
the AVIF software with PNG format for input to maximize
compression performance.

All comparable results are demonstrated in Figure 13.
It is seen that our approach achieves the best results
with commonly used metrics PSNR and MS-SSIM on three
datasets. Compared with the baseline method [18], our
approach achieves comparable R-D performance on the
Kodak dataset [19] (Figure 13 (a)(d)) and outperforms the
baseline on both the CLIC dataset [20] (Figure 13 (b)(e))
and the DIV2K dataset [21] (Figure 13 (c)(f)). This means
that our approach achieves the variable-rate adaptation
based on the single-rate method [18] without sacrificing
any performance, verifying the effectiveness of the I2C. It
is worth noting that the CLIC dataset and DIV2K dataset
are high-resolution images, implying that our method is
more effective on high-resolution images. Our approach

So
ur

ce
 Im

ag
e

O
ur

s

BPP=0.070 
PSNR=28.201

B
al

lé
 e

t a
l.

BPP=0.068
PSNR=26.623

O
ur

s

BPP=0.057 
PSNR=27.882

M
in

ne
n 

et
 a

l.

BPP=0.051 
PSNR=27.087

O
ur

s

BPP=0.109
PSNR=28.815

C
he

n 
et

 a
l.

BPP=0.115
PSNR=28.354

O
ur

s

BPP=0.090
PSNR=28.751

H
u 

et
 a

l.

BPP=0.097
PSNR=28.086

So
ur

ce
 Im

ag
e

O
ur

s

BPP=0.080
PSNR=30.053

B
al

lé
 e

t a
l.

BPP=0.082
PSNR=27.912

O
ur

s

BPP=0.070
PSNR=29.621

M
in

ne
n 

et
 a

l.

BPP=0.058
PSNR=28.641

O
ur

s

BPP=0.096
PSNR=31.024

C
he

n 
et

 a
l.

BPP=0.105
PSNR=30.445

O
ur

s

BPP=0.113
PSNR=31.779

H
u 

et
 a

l.

BPP=0.119
PSNR=30.862

Fig. 12: Visualization of samples on practical biomedical and
remote sensing images. Compared with single-rate meth-
ods (Ballé et al. [10], Minnen et al. [29], Chen et al. [36]),
and Hu et al. [32] which need multiple models to achieve
different compression rates. Same as the settings of Figure 8,
for each comparison, we adjust the bpp of our I2C to adapt
those methods. Consistently, our I2C has also much better
RD performance on practical images of different domains.

TABLE 3: Variable-rate control experiments over the Kodak
dataset. Our approach can finely control the compression
rate within the whole bpp range (no matter low or high).

LOW HIGH
BPP PSNR(dB) MS-SSIM(dB) BPP PSNR(dB) MS-SSIM(dB)

0.28181 31.6951 14.5015 1.02433 38.3226 21.2580
0.28265 31.7071 14.5153 1.02587 38.3312 21.2664
0.28342 31.7177 14.5263 1.02733 38.3388 21.2717
0.28416 31.7291 14.5377 1.02910 38.3468 21.2819
0.28500 31.7435 14.5517 1.03071 38.3548 21.2903
0.28576 31.7538 14.5639 1.03250 38.3625 21.2995
0.28659 31.7657 14.5765 1.03406 38.3703 21.3087
0.28734 31.7761 14.5874 1.03564 38.3767 21.3190
0.28808 31.7884 14.5952 1.03733 38.3872 21.3291
0.28880 31.8004 14.6092 1.03885 38.3943 21.3355

empowers the network model with variable rate in addition
to improving the algorithmic performance of the original
model. In Figure 13 (a, d), the test dataset is Kodak, which
contains images with a resolution of 768×512, and it is
smaller compared to CLIC and DIV2K. As image resolution
decreases, feature maps fed into the IAT module become
smaller and more susceptible to quantization. That is, from
experimental results, our method is especially effective on
high-resolution images. In Figure 13 (b), the advantages
obtained by our method can be seen. The overlapping part
of the curve shows that performances of fixed compression
rate methods are similar to ours at specific compression
rates. In summary, for a fixed rate compression, once a low-
resolution image is fed, the performance of our method
is competitive compared to the baseline. In contrast, once
a high-resolution image is fed, our proposed method can
even outperform the baseline. Besides, our method still
can outperform other methods no matter the resolution
of the input image. To further compare the performance
between the baseline [18] and our method, we calculate their
corresponding area under curve (AUC) values, as shown in
Table 2. The results show that our approach outperforms the
single-rate model method by Xie et al. [18] in terms of the
aggregated AUC metric.

In addition, Our I2C could achieve variable-rate image
compression with fine granularity. To verify the effective-
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(f) MS-SSIM on DIV2K

Fig. 13: RD performance curves aggregated over the Kodak [19], CLIC professional validation dataset [20], and DIV2K
validation dataset [21]. MS-SSIM values converted to decibels (−10log10(1−MS-SSIM)). (a)/(b)/(c) and (d)/(e)/(f) are
results on Kodak, CLIC, and DIV2K about PSNR and MS-SSIM, respectively. It is worth noting that CLIC and DIV2K are
datasets with high-resolution images. That is, our method is especially effective on high-resolution images.

ness of fine variable-rate control, we illustrate multiple
performances of fine variable-rate control within the low
and high bpp range in Table 3. In practice, classical image
codecs provide hundreds of variable-rate RD points to meet
the basic requirements of the application. Compared with
that, our method obtains at least 1000 effective variable-rate
RD points with a very fine PSNR and MS-SSIM.

5.4 Reduction in the Volume of Model Parameters

To further improve the efficiency of our model, we try
to additionally reduce its parameters without performance
compromise. Compared to the original version shown in
Figure 2, the number of channels of feature maps, which are
before and after channel averaging operations, is reduced
from 768 to 192. Therefore, we then consider inserting the
IAT module after the channel averaging operation instead
of before it to make the entire model more lightweight.
Also, due to the ability of latent representation modeling
of I2C, we further remove the attention module of the I2C
RealNVP-based version to reduce the number of parame-
ters. The experiments show that such a simplification has
no significant impact on the performance of the algorithm.
Figure 14 shows the network framework of the lightweight
version. We present the computational costs and model size
of Ours and Ourslight in Table 4, the number of parameters
has been reduced by nearly one-third, and the reduction
of the number of parameters has taken a step toward the

TABLE 4: Compare the parameter and computational cost
among ours, our lightweight version, baseline [18], and
another two typical learning-based approaches ([54], [56]).
The GFLOPs and running memory are obtained by in-
putting the 512*768 RGB image. N denotes the number of
different compression rate models. It is worth noting that
our proposed I2C has more than 1000 variable compression
rates, i.e., N > 1000, in addition to maintaining high fidelity
continuous codec.

Method GFLOPs Parameters
(M)

Memory
(GB)

Training cost
(Days)

Lu et al. [56] 216.834 15.952× N 3.593 4× N
Qian et al. [54] 180.258 42.686× N 3.532 7× N
Baseline [18] 379.329 45.345× N 2.492 10× N

Ourslight 403.854 44.904× 1 2.558 16× 1
Ours 472.491 68.513× 1 2.665 18× 1

practicability of the algorithm deployment. We tested the
algorithm performance on three datasets: Kodak [19], CLIC
Professional Validation [20] and DIV2K validation [21].
Since the RD-performance curves are close, we calculated
the AUC (the higher the value, the better the performance)
to be able to see more intuitively the algorithm performance
comparison before and after the parametric number change.
The results of the experiment are shown in Table 5, the
number of parameters is reduced by nearly one-third, but
the performance of the algorithm is not degraded, which
shows that this simplification is effective.
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Fig. 14: The lightweight version of network architecture equipped with the proposed Invertible Activation Transforma-
tion (IAT) module. The last IAT module inserts after the channel squeeze operation to reduce the volume of the model
parameters. EC/ED means entropy encoding/decoding respectively. Q is the quantizer.

5.5 The Complexity of I2C

In this subsection, we present the complexity of our pro-
posed I2C about the size of parameters, GFLOPs, running
memory, and train costs. The statistics of GFLOPs and
running memory are performed during the inference pro-
cedure, and the ANS entropy coding [66] (adopted by all
methods in the same way, running on CPU) is not included
to facilitate the statistics. The proposed I2C outperforms the
baseline [18] not only in rate-distortion performance but
also in efficiency. Since the proposed model could obtain
variable-rate image compression within a single model, we
can reduce a large amount of additional training and storing
once different compression rates are required in a task.
The baseline [18] and another two typical learning-based
methods ([54], [56]) take about 10/7/4 days to train a fixed-
rate model on one single Nvidia RTX 3090 GPU respectively.
However, once N different compression rates are required,
the training time and storing cost would heavily increase
to N times. With the same computational environment, our
proposed I2C only requires 18 days (or 16 days for the
lightweight version) to train and could achieve more than
1000 different compression rates, as shown in TABLE 4.

5.6 I2C with Different INN-based Architectures

We use three different coupling layers from Incompressible-
flow Network (GIN) [23], NICE [24], and GLOW [25] instead
of the affine coupling layer, initially proposed in Real-
NVP [26] and adopted by the invertible block of baseline
model [18] in Figure 2, to verify that I2C can adapt to differ-
ent INN-based architectures. We conduct RD performance
experiments on three datasets, i.e., Kodak [19], CLIC [20],
and DIV2K [21]. In order to compare the performance with
OurNICE, OurGIN, and OursGLOW methods, we calculate their
corresponding area under curve (AUC) values, as shown in
Table 6. Since the GIN [23] preserves volumes of the INN
and the Jacobian determinant is simply unity, the result is
better lightly than our I2C RealNVP-based version. It can be
seen from the experimental results that I2C can be readily
applied to different INN-based architectures.

TABLE 5: Area under curve (AUC) of ours and our
lightweight version on three different datasets of PSNR and
MS-SSIM. The bpp range is determined by the intersection
of two methods. The lightweight version keeps a competi-
tive R-D performance compared to the original one.

Dataset Ours Ourslight
AUCPSNR AUCMS-SSIM AUCPSNR AUCMS-SSIM

Kodak 32.8444 16.5020 32.8408 16.4993
CLIC 23.8422 11.9030 23.8401 11.9054

DIV2K 28.3760 14.9412 28.3763 14.9438

6 DISCUSSION

6.1 Codec Processing of Variable-rate Control

It is worth noting that there are three crucial differences
in achieving the fine variable-rate control between Song
et al. [1] and ours. Firstly, the input of controlling is dif-
ferent. The tensor-based Lagrange multiplier is computed
by the quality level, which is different from the quality
map input of Song et al. [1]. The quality map of Song et
al. [1] represents the semantic segmentation map for task-
aware image compression, and our quality level represents
the compression level. Secondly, the additional information
is different. The training process is different because our
quality level is different from the quality map of Song et
al. [1], which requires semantic segmentation labels, and we
do not need semantic segmentation labels, enabling more
flexible image compression. Our method is able to train on
arbitrary images without semantic segmentation labels, as
we mention in Section 3.3. Finally, The codec processing of
variable-rate controlling is different. Song et al. [1] used dif-
ferent quality maps in the encoding and decoding process,
i.e., the quality map in the decoding process is generated by
the latent representation through neural networks, which is
not equal to the input quality map in the encoding process.
Differently, we control the variable-rate image compression
by storing the quality level in the bitstream directly. The
usage of the same quality level of both encoding and de-
coding procedures would bring out a more stable and finer
controlling result. To validate this idea, we conduct fine
variable-rate control comparison experiments with 10000
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TABLE 6: Area under curve (AUC) of Ours, OursGIN, OursNICE and OursGLOW on different datasets of PSNR and MS-SSIM.
The bpp range is determined by the intersection of four methods. It can be seen from the experimental results that I2C can
be readily applied to different INN-based architectures.

Dataset Ours OursGIN OursNICE OursGLOW
AUCPSNR AUCMS-SSIM AUCPSNR AUCMS-SSIM AUCPSNR AUCMS-SSIM AUCPSNR AUCMS-SSIM

Kodak 32.4607 16.3008 32.5049 16.3115 32.3582 16.2012 32.5253 16.2651
CLIC 23.5862 11.7673 23.6004 11.7484 23.5164 11.7181 23.5889 11.6833

DIV2K 28.0639 14.7713 28.0944 14.7635 27.9752 14.6985 28.1108 14.7187

TABLE 7: Comparison with Song et al. [1] on bpp fine variable-rate controlling. Ideally, as bpp increases, PSNR and MS-
SSIM should also increase accordingly. However, PSNR and MS-SSIM of Song et al. [1] do not keep consistently increasing
while occasional decays occur, indicating that our proposed I2C achieves finer and more stable variable-rate controlling
due to different inputs and strategies.

Ours Song et al. [1]

BPP PSNR PSNR
difference value MS-SSIM MS-SSIM

difference value BPP PSNR PSNR
difference value MS-SSIM MS-SSIM

difference value
0.108585 27.716038 / 10.669252 / 0.108582 27.334372 / 10.328648 /
0.108605 27.717019 0.000981 10.670246 0.000994 0.108605 27.334668 0.000296 10.328349 -0.000299
0.108636 27.717729 0.000710 10.670953 0.000707 0.108626 27.336041 0.001372 10.329235 0.000886
0.108663 27.718516 0.000786 10.671773 0.000820 0.108632 27.329554 -0.006487 10.329636 0.000401
0.108707 27.719769 0.001253 10.672980 0.001207 0.108670 27.328086 -0.001468 10.329518 -0.000119
0.108734 27.720084 0.000315 10.674001 0.001021 0.108673 27.329059 0.000973 10.330991 0.001474
0.108775 27.721330 0.001246 10.675116 0.001115 0.108707 27.329655 0.000596 10.331930 0.000938
0.108795 27.722693 0.001363 10.675595 0.000479 0.108721 27.330576 0.000921 10.332789 0.000860
0.108819 27.723348 0.000655 10.675724 0.000129 0.108761 27.331321 0.000745 10.332517 -0.000272
0.108856 27.724760 0.001412 10.677004 0.001281 0.108792 27.332157 0.000836 10.333420 0.000903
0.108894 27.726053 0.001293 10.678917 0.001912 0.108802 27.329894 -0.002264 10.332498 -0.000922
0.108907 27.727370 0.001317 10.679967 0.001050 0.108832 27.331151 0.001258 10.333511 0.001013

points. We implemented Song et al. [1] according to their
official GitHub code. It can be seen in Table 7 that with
the bpp increases, Song et al. [1] show occasional decay in
PSNR and MS-SSIM, while ours are consistently increasing.
The result indicates that our fine variable-rate control is
different from Song et al. [1], and shows better and more
stable results on fine variable-rate control. In addition, the
quality level is a uniform tensor generated from a single
value during the testing. The number of stored bits in the
bitstream depends on the granularity of desirable variable-
rate control. Theoretically, if 8 bits are used, 28 = 256
effective variable rates are achieved. If 16 bits are used,
216 = 65536 effective variable rates are achieved. This small
amount of additional bitstream storage can generate a large
number of fine variable rates, which is quite practical in
real-world applications.

6.2 Impact of the QLevel Representation
To further analyze the effectiveness of the tensor-based
QLevel representation of our proposed I2C, we conducted
an ablation study by modifying the quality level repre-
sentation. We compared the proposed approach with the
baseline method [18] and the simplified version of our
method, which modifies the quality level from tensor to
scalar, similar to [13]. We also conduct the comparison
experiment with the method of Lin et al. [16], which used
the scaling network (Scale network) to map the scalar value
of the Lagrange multiplier into a vector channel-wisely
scale feature map achieving the variable compression rate.
It is worth noting that the method of Lin et al. [16] does
not satisfy mathematical invertibility and cannot be used
directly, so we modified it to be applicable to the invertible
neural network-based architecture. Comparative results are

shown in Figure 15 (a) and (b). The results indicate that
the proposed tensor-based quality level can obtain better
performance, compared with the scalar factor one, which
only provides channel-wise weighted computations on la-
tent representation. I2C achieves the same great advantage
compared to the Scale network one (Lin et al. [16]).

6.3 Impact of Gain Components
The context model [27], [28], [29] and the non-local atten-
tion module [36] are commonly used in the learned-based
image compression methods to further reduce statistical
redundancy within the latent features and improve the
probabilistic estimation ability of the network. We conduct
an ablation study to evaluate the impact of the context
model and non-local attention module on our method
in the Kodak dataset [19], as shown in Figure 15(c). We
start from a baseline without the context model and non-
local attention module, i.e., W/O CM (context model) and
W/O NLAM (non-local attention module), and plot the
rate-distortion performance in green color. Then, we add
the non-local attention module (blue color) and context
model (red color) to evaluate the performance. We can ob-
serve that using the context model achieves the best results,
while it requires high computational costs (codec process
takes about 233 seconds on an Intel (R) Core (TM) i9-10900K
CPU on Kodak and includes entropy encoding/decoding
procedure). Once the context model is removed, I2C could
be implemented on GPU platforms in a parallel computing
manner and the codec time would reduce to 5.694 seconds
on one NVIDIA RTX 3090 GPU. In addition, even if the
context model and non-local attention module are removed
from I2C, our method still outperforms Song et al. [1],
demonstrating the effectiveness of the proposed method.
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Fig. 15: (a) and (b) represent the impact of the QLevel representation. The scale factor method (green line) is similar to
Chen et al. [13]. The scale network method (purple line) is similar to Lin et al. [16]. Our proposed tensor-based QLevel
representation achieves better performance than simply using a scalar or scale network to control the compression rate.
(c) represents the impact of gain components. W/O represents “without”, W represents “with”, CM represents “context
model”, and NLAM represents “non-local attention module”.

6.4 The Suitability of INN for High-Fidelity Codec
To investigate the reason why our I2C could better handle
the problem, we further conduct the error accumulation
analysis during the re-encoding procedure. In the lossy
image compression procedure of re-encodings, the error
accumulation can be described in the following formulation:

∆ =∆1
e ◦∆1

q ◦∆1
d ◦∆1

rc︸ ︷︷ ︸
Iteration 1

◦ ∆2
e ◦∆2

q ◦∆2
d ◦∆2

rc︸ ︷︷ ︸
Iteration 2

◦

· · · ◦∆N
e ◦∆N

q ◦∆N
d ◦∆N

rc︸ ︷︷ ︸
Iteration N

,
(19)

where ◦ denotes the function composition. During the n-th
step of the re-encoding iteration, ∆n

q, ∆n
e , ∆n

d, and ∆n
rc denote

error of quantization, error of encoding transformation,
error of decoding transformation, and error of rounding and
clipping, respectively.

In our proposed I2C, errors of encoding and decoding
transformation (∆n

e and ∆n
d) are composed of small numbers

of nonlinear layers (e.g., dense block) and plenty of bijective
mapping layers. The error accumulation can be expressed
as the following:

∆n
ed-ours = ∆n

e ◦∆n
q = ∆n

nonlinear-1 ◦∆n
nonlinear-2 ◦∆n

bijective. (20)

In the VAE-based method (e.g., [1]), errors of encoding
and decoding transformation (∆n

e and ∆n
d) are composed

of massive nonlinear layers (e.g., resnet block). The error
accumulation can be expressed as the following:

∆n
ed-VAE = ∆n

e ◦∆n
q =∆n

nonlinear-1 ◦∆n
nonlinear-2◦

· · · ◦∆n
nonlinear-T.

(21)

The architecture of our proposed I2C is primarily composed
of bijective mapping layers, which exhibit a mathematical
invertible property to avoid discarding any information in
the latent space, resulting in preserving high fidelity. The
error accumulation in the encoding and decoding transfor-
mation of our proposed I2C is much less than the VAE-based
approach (∆n

ed-ours < ∆n
ed-VAE) (especially with the growing

complexity of the model, our I2C has a fixed small number
of nonlinear layers while the number of nonlinear layers
T of the VAE-based method is increasing). Therefore, our
proposed I2C can achieve the high fidelity of reconstructed
images in the continuous codec process more efficiently.
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Fig. 16: Successive re-encodings on the Kodak [19] dataset
with different fixed rates. (a)/(b) and (c)/(d) are the results
of the PSNR/PSNR Difference Value and MS-SSIM/MS-
SSIM Difference Value, respectively.

6.5 Impact of Re-encodings with Different Fixed Rates

We analyze the effect of re-encodings with different fixed
compression rates (λs) at low, medium, and high bpp,
respectively. Figure 16 (a)/(c) illustrates the decay of
PSNR/MS-SSIM with increasing re-encoding operations at
three different rates. Figure 16 (b)/(d) shows the gradual
decrease of the PSNR/MS-SSIM difference value between
two adjacent re-encoding operations as the number of it-
erations increases. The reconstructed image quality will be
better at higher bits-per-pixel (BPP), as shown in Figure 16
(a)/(c). Besides, we also find that the decay tendencies of
the PSNR/MS-SSIM remain consistent for different com-
pression rates during re-encoding operations. As discussed
in Section 6.4, the accumulation of errors comes from four
aspects (refer to Equation 19), our proposed I2C greatly
eliminates the errors (∆n

e and ∆n
d) generated by the encod-

ing/decoding transformation, since the number of nonlinear
layers of our I2C is small and fixed no matter the com-
pression rate is. Thus given different fixed λs, the system
would gradually converge to a stable state as the number of
iterations increases, as verified by Figure 16 (b)/(d).
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7 CONCLUSION

In this paper, we propose a high-fidelity variable-rate image
compression method by introducing the Invertible Contin-
uous Codec (I2C). We construct the I2C based on Invertible
Neural Network (INN) with the core Invertible Activation
Transformation (IAT) module implemented in a mathemat-
ical invertible manner. IAT is actually a feature activation
transform layer of the INN and has the ability of fine
variable-rate control by feeding the quality level (QLevel) to
generate the scaling and bias tensors while better preserving
the image fidelity. Extensive experiments demonstrate that
thanks to the invertible design of I2C, fewer artifacts or color
shifts would have appeared and the fidelity of reconstructed
images is better preserved, especially when multiple contin-
uous re-encodings are executed under various compression
rates. I2C is also able to achieve fine variable-rate control
without any performance compromise.
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